Эмг активность мышц. Показатели активности мышечной системы Обеспечение мышц энергией


В. Н. Селуянов, В. А. Рыбаков, М. П. Шестаков

Глава 1. Модели систем организма

1.1.4. Физиология мышечной деятельности

Биохимия и физиология мышечной активности при выполнении физической работы может быть описана следующим образом. Покажем с помощью имитационного моделирования как разворачиваются физиологические процессы в мышце при выполнении ступенчатого теста.

Предположим, что мышца (например, четырехглавая мышца бедра) имеет ММВ 50 %, амплитуда ступеньки - 5 % максимальной алактатной мощности, величина которой принята за 100 %, длительность - 1 мин. На первой ступеньке в связи с малым внешним сопротивлением рекрутируются, согласно «правилу размера» Ханнемана, низкопороговые ДЕ (МВ). Они имеют высокие окислительные возможности, субстратом в них являются жирные кислоты. Однако первые 10 20 с энергообеспечение идет за счет запасов АТФ и КрФ в активных МВ. Уже в пределах одной ступеньки (1 мин.) имеет место рекрутирование новых мышечных волокон, благодаря этому удается поддерживать заданную мощность на ступеньке. Вызвано это снижением концентрации фосфогенов в активных МВ, то есть силы (мощности) сокращения этих МВ, усилением активирующего влияния ЦНС, а это приводит к вовлечению новых ДЕ (МВ). Постепенное ступенчатое увеличение внешней нагрузки (мощности) сопровождается пропорциональным изменением некоторых показателей: растет ЧСС, потребление кислорода, легочная вентиляция, не изменяется концентрация молочной кислоты и ионов водорода.

При достижении внешней мощности некоторого значения наступает момент, когда в работу вовлекаются все ММВ и начинают рекрутироваться промежуточные мышечные волокна (ПМВ). Промежуточными мышечными волокнами можно назвать те, в которых массы митохондрий недостаточно для обеспечения баланса между образованием пирувата и его окислением в митохондриях. В ПМВ после снижения концентрации фосфогенов активизируется гликолиз, часть пирувата начинает преобразовываться в молочную кислоту (точнее говоря, в лактат и ионы водорода), которая выходит в кровь, проникает в ММВ. Попадание в ММВ (ОМВ) лактата ведет к ингибированию окисления жиров, субстратом окисления становится в большей мере гликоген. Следовательно, признаком рекрутирования всех ММВ (ОМВ) является увеличение в крови концентрации лактата и усиление легочной вентиляции. Легочная вентиляция усиливается, в связи с образованием и накоплением в ПМВ ионов водорода, которые при выходе в кровь взаимодействуют с буферными системами крови и вызывают образование избыточного (неметаболического) углекислого газа. Повышение концентрации углекислого газа в крови приводит к активизации дыхания (Физиология человека, 1998).

Таким образом, при выполнении ступенчатого теста имеет место явление, которое принято называть аэробным порогом (АэП). Появление АэП свидетельствует о рекру-тировании всех ОМВ. По величине внешнего сопротивления можно судить о силе ОМВ, которую они могут проявить при ресинтезе АТФ и КрФ за счет окислительного фосфори-лирования (Селуянов В. Н. с соав., 1991).

Дальнейшее увеличение мощности требует рекрутирования более высокопороговых ДЕ (ГМВ), в которых митохондрий очень мало. Это усиливает процессы анаэробного гликолиза, больше выходит лактата и ионов Н в кровь. При попадании лактата в ОМВ он превращается обратно в пируват с помощью фермента ЛДГ Н (Karlsson, 1971,1982). Однако мощность митохондриальной системы ОМВ имеет предел. Поэтому сначала наступает предельное динамическое равновесие между образованием лактата и его потреблением в ОМВ и ПМВ, а затем равновесие нарушается, и некомпенсируемые метаболиты - лактат, Н, СО 2 - вызывают резкую интенсификацию физиологических функций. Дыхание один из наиболее чувствительных процессов, реагирует очень активно. Кровь при прохождении легких в зависимости от фаз дыхательного цикла должна иметь разное парциальное напряжение СО 2 . «Порция» артериальной крови с повышенным содержанием СО 2 достигает хеморецепторов и непосредственно модулярных хемочувствительных структур ЦНС, что и вызывает интенсификацию дыхания. В итоге СО 2 начинает вымываться из крови так, что в результате средняя концентрация углекислого газа в крови начинает снижаться. При достижении мощности, соответствующей АнП, скорость выхода лактата из работающих гликолитических МВ сравнивается со скоростью его окисления в ОМВ. В этот момент субстратом окисления в ОМВ становятся только углеводы (лактат ингибирует окисление жиров), часть из них составляет гликоген ММВ, другую часть - лактат, образовавшийся в гликолитических МВ. Использование углеводов в качестве субстратов окисления обеспечивает максимальную скорость образования энергии (АТФ) в митохондриях ОМВ. Следовательно, потребление кислорода или (и) мощность на анаэробном пороге (АнП) характеризует максимальный окислительный потенциал (мощность) ОМВ (Селуянов В. Н. с соав., 1991).

Дальнейший рост внешней мощности делает необходимым вовлечение все более высокопороговых ДЕ, иннервирующих гликолитические МВ. Динамическое равновесие нарушается, продукция Н, лактата начинает превышать скорость их устранения. Это сопровождается дальнейшим увеличением легочной вентиляции, ЧСС и потребления кислорода. После АнП потребление кислорода в основном связано с работой дыхательных мышц и миокарда. При достижении предельных величин легочной вентиляции и ЧСС или при локальном утомлении мышц потребление кислорода стабилизируется, а затем начинает уменьшаться. В этот момент фиксируют МПК.

Изменение психофизического состояния студентов в период экзаменационной сессии.

Экзаменационная сессия является одним из структурных элементов
учения - ведущего вида деятельности студентов.

Напряженный характер экзаменационной сессии является ее специфической чертой. Влияние на работоспособность, активность студента и его психическое состояние оказывают и информационные параметры деятельности - содержание, объем экзаменационных билетов, темп предъявления вопросов. Другие характеристики - особенности сдачи
экзамена, связанные с преобразованием - воспоминанием рабочей (заученной) информации, являются основной причиной развития состояния психического напряжения и напряженности. Ситуация экзамена является типичной ситуацией неопределенности.

Можно сделать вывод, что экзамены здоровья учащимся не прибавляют, а наоборот. Действительно, многочисленные исследования показывают, что во время подготовки и сдачи экзаменов имеют место интенсивная умственная деятельность, крайнее ограничение двигательной активности, нарушение режима отдыха и сна, эмоциональные переживания.
Все это приводит к перенапряжению нервной системы, отрицательно влияет на общее состояние и сопротивляемость организма.

Условно можно выделить следующие группы психических состояний,
свойственных этому возрасту:

1. Внутренней дискомфортности, неуютности, раздражительности, рассосредоточенности, бесцельности. Трудно собраться с мыслями, управлять своими действиями. Воля снижена, эмоции расторможены, мысли несобраны.

2. Состояние выраженного недовольства, вражды, негативного отношения к окружающим.

3. Состояния, близкие к агрессивности, драчливости, гневливости, грубости.

4. Аффективные вспышки - драка, грубость, оскорбления, нарушения дисциплины.

Средства физической культуры для оптимизации работоспособности, профилактики нервно-эмоционального и психофизического утомления студентов, повышения эффективности учебного процесса.

1) систематическое изучение учебных предметов студентами в семестре, без
«штурма» в период зачетов и экзаменов.

2) Ритмичную и системную организацию умственного труда.

3) Постоянное поддержание эмоции и интереса

4) Совершенствование межличностных отношений студентов между собой и преподавателями вуза, воспитание чувств.

5) Организация рационального режима труда, питания, сна и отдыха.

6) Отказ от вредных привычек: употребления алкоголя и наркотиков, курения и токсикомании.

7) Физическую тренировку, постоянное поддержание организма в состоянии оптимальной физической тренированности.

8) Обучение студентов методам самоконтроля за состоянием организма с целью выявления отклонений от нормы и своевременной корректировки и устранения этих отклонений средствами профилактики.

Классификация физических упражнений.

1. Классификация физических упражнений по признаку исторически сложившихся систем физического воспитания. Исторически в обществе сложилось так, что все многообразие физических упражнений постепенно аккумулировалось всего в четырех типичных группах: гимнастика, игры, спорт, туризм. Каждая из этих групп физических упражнений имеет свои существенные признаки, но главным образом они различаются педагогическими возможностями, специфическим назначением в системе физического воспитания, а также свойственной им методикой проведения занятий.

2. Классификация физических упражнений по их анатомическому признаку. По этому признаку все физические упражнения группируются по их воздействию на мышцы рук, ног, брюшного пресса, спины и т.д. С помощью такой классификации составляются различные комплексы упражнений (гигиеническая гимнастика, атлетическая гимнастика, разминка и т.п.).

3. Классификация физических упражнений по признаку их преимущественной направленности на воспитание отдельных физических качеств. Здесь упражнения классифицируются по следующим группам:

· скоростно-силовые виды упражнений (например, бег на короткие дистанции, прыжки, метания и т.п.);

· упражнения циклического характера на выносливость (например, бег на средние и длинные дистанции, лыжные гонки, плавание и т.п.);

· упражнения, требующие высокой координации движений (например, акробатические и гимнастические упражнения, прыжки в воду, фигурное катание на коньках и т.п.);

· упражнения, требующие комплексного проявления физических качеств и двигательных навыков в условиях переменных режимов двигательной деятельности, непрерывных изменений ситуаций и форм действий (например, спортивные игры, борьба, бокс, фехтование).

4. Классификация физических упражнений по признаку биомеханической структуры движения. По этому признаку выделяют циклические, ациклические и смешанные упражнения.

5. Классификация физических упражнений по признаку физиологических зон мощности. По этому признаку различают упражнения максимальной, субмаксимальной, большой и умеренной мощности.

6. Классификация физических упражнений по признаку спортивной специализации. Все упражнения объединяют в три группы: соревновательные, специально-подготовительные и общеподготовительные.

Мышечная активность и сердечная деятельность, их взаимосвязь.

Функции мышц в человеческом теле – производство работы и энергии, используя получаемые с пищей вещества, первую очередь углеводы и жиры.
Хорошему здоровью необходима хорошая мышечная активность. Мышцы способны выполнять свою работу только при определённых условиях – необходима энергия. Энергия добывается путём окисления питательных веществ – в первую очередь жиров.

Человеческое тело состоит из мышц. Сердце – это мышца.

Выявлено, что выполнение физической нагрузки большой мощности усиливает активность и взаимосвязи мышечной и сердечно-сосудистой систем. В состоянии покоя и при утомлении проявляется линейный характер взаимосвязей двух систем, при врабатывании и в устойчивом состоянии - экспоненциальный. Развитие компенсированного утомления, не меняя ведущей роли четырехглавой, двуглавой и икроножной мышц нижних конечностей в реализации усилия, изменяет их взаимосвязи и парциальную роль на различных участках циклического движения, повышает их электрическую активность. При развитии декомпенсированного утомления снижается электрическая активность и нарушается координация во взаимосвязях ведущих мышц правой и левой конечности.

Активность и взаимосвязи МС и ССС зависят от условий функционирования (покой, работа различной мощности), периода работы, индивидуальных особенностей.

Переход от состояния покоя к работе, усиливая деятельность мышечной и ССС, синхронизирует их активность, степень их интеграции, изменяет характер взаимодействия - от линейного - в покое и при утомлении, к экспоненциальному - при врабатывании и устойчивом состоянии.

Физиология мышечной деятельности

Ни один акт жизнедеятельности не осуществляется без мышечного сокращения, будь то сокращение сердечной мышцы, стенок кровеносных сосудов или движение глазного яблока. Мышцы - надежный биодвигатель. Их работа - не только простейший рефлекс, но и совокупность сотен сложнейших по координации пространственных перемещений.

У человека более 600 мышц, которые можно назвать универсальным тончайшим инструментом. С их помощью человек практически неограниченно воздействует на окружающий мир и реализует себя в многообразных видах деятельности. Например, мы не научились бы писать, если бы не были развиты мышцы руки и пальцев, не могли бы мастерить разнообразные предметы. Пальцы музыканта-виртуоза творят чудеса. Человек способен взметнуть на прямые руки штангу весом 265 кг. Акробаты и гимнасты в одном прыжке успевают прокрутить тройное сальто. Не менее удивительна способность мышц к длительной напряженной работе - выносливости: марафонскую дистанцию (42 км 195 м) сейчас даже женщины пробегают быстрее чем за 2 ч 30 мин.

В форме обратной связи мышцы влияют на тонус и уровень активности центральной нервной системы, которая совершенствовалась в течение сотен тысяч лет вместе с эволюционным усложнением поведенческих реакций.

Возможности мышечной системы огромны. Одна из главных ее особенностей в том, что ее работой можно управлять произвольно, то есть усилием воли. А через мышцы можно воздействовать в конечном итоге на процессы энергообеспечения. Ведь физическая работа совершается за счет внутренних энергетических ресурсов, источником которых служат углеводы, белки к жиры, поступающие с пищей.

Энергия, заключенная в потребляемых продуктах, переходит в результате цикла биохимических реакции во внутреннюю биоэнергию, а затем расходуется, например, на работу мышечной системы, умственную деятельность, а также на образование тепла. Ни на мгновение не прекращаются химические реакции, поддерживающие жизнь клеток нашего организма за счет постоянного потребление энергии.

Мышление, интеллектуальная работа также связаны с движением, только не с непосредственно физическим. В клетках мозга есть движение (на уровне обмена веществ) энергоносителей: возбуждается биоэлектрический «потенциал действия», кровь доставляет к мозгу вещества, богатые энергией, а затем удаляет продукты их распада. «Движение» в клетках мозга представляет собой изменение биоэлектрического потенциала и его поддержание благодаря непрерывно протекающим биохимическим реакциям - реакциям обмена, постоянно требующим доставки «энергосырья». Вот почему для продуктивной интеллектуальной работы так важно усиление кровотока.

В основе существования живых организмов лежит непрерывность обменных процессов - происходит своеобразный круговорот элементов жизнеобеспечения. Поэтому так важна роль мышечной деятельности - естественного фактора, ускоряющего интенсивность обменных процессов.

Что же такое мышечная деятельность и как она влияет на обмен веществ?

Мышца представляет собой жгут из очень тонких продольных волокон - миофибрилл, в состав которых входит сократительный белок актомиозин. Сокращение мышцы происходит за счет электромагнитных сил, заставляющих тонкие и толстые нити двигаться навстречу друг другу так же, как металлический сердечник втягивается в катушку электромагнита. Возбуждение, передаваемое биоэлектрическими импульсами по нервным волокнам со скоростью около 5 м/с, вызывает суммарное укорочение миофибрилл и увеличение поперечного размера мышцы.

Механизм мышечной работы с точки зрения биоэнергетики схематически показан на рис. 1.

Рис. 1. Биоэнергетический механизм мышечной работыю

Чем больше укорачиваются мышечные волокна и мощнее сокращение, тем выше уровень потребления энергии, заключенной в клетках мышц в вице аденозинтрифосфорной кислоты (АТФ). АТФ синтезируется в клеточных «энергостанциях» - митохондриях путем расщепления углеводов, жиров и белков, доставляемых кровью через капилляры.

Не менее важна и величина механического сопротивления, преодолеваемого мышцей. Это сопротивление определяет интенсивность нервно-мышечного импульса, а также обеспечивает равномерное растяжение мышечной ткани (при ее сокращении) от первоначальной длины до конечного размера. Значит, чем выше уровень нервно-мышечного возбуждения, тем больше расходуется биохимической энергии. Наибольший физиологический КПД достигается, если при движении костных рычагов, преодолевающих внешнее сопротивление, сохраняется одинаковое мышечное напряжение (работа в изотоническом режиме).

Важна также интенсивность мышечной работы, то есть ее количество в единицах времени, и ее длительность, которые обусловлены энергетическими возможностями организма.

Движение - одно из главных условий существования человека в окружающей среде, а возможно оно только за счет деятельности мышечной системы, значит, мышцы надо постоянно тренировать. Физиологическая активность любого организма зависит от его биологической мощности, а она, в свою очередь, от работоспособности мышц, «подчиняющихся» волевому управлению. Образно говоря, здоровье - зеркало нагрузок. Притча о Милоне Кротонском рассказывает о юноше, носившем на своих плечах быка, с ростом которого росла и сила Милона.

Нагрузкой на мышцы можно эффективно регулировать не только энергообмен, но и общий обмен веществ в организме. Это наиболее естественный способ «управления» биопотенциалом, вызывающий положительные изменения во всех органах и системах. А их состояние и определяет уровень нашего здоровья.

Психика как система управления поведением, в частности сложнейшими движениями скелетных звеньев, тесно связана с телом (соматика), прежде всего с мышцами, которые обладают способностью трансформировать внутренние энергетические ресурсы, содержащиеся в АТФ. Недаром в последние десятилетия сделан акцент на изучение организма с точки зрения психосоматики. Поэтому часто у людей физически не активных, у которых мышцы, в том числе и сердечная, не тренированы и не развиты, нарушаются не только процессы энергообмена, но и работа центральной нервной системы, «ответственной» за нормальное функционирование организма, так как от величины нервно-мышечного напряжения зависит интенсивность биохимических реакций и в нервных клетках, также постоянно нуждающихся в энергообеспечении. Другими словами, деятельность центральной нервной системы зависит и от работы мышц. Именно поэтому движение, физическая активность позволяют не только сохранять, но и повышать функциональные возможности организма, которые определяют уровень здоровья. Поэтому, если вы регулярно будете заниматься физическими упражнениями, ощутимые результаты скажутся довольно скоро. Что выбрать - решать вам самим. Попробуйте освоить атлетическую гимнастику без снарядов - может быть, это то, что вам нужно?

Из книги Учебник подводной охоты на задержке дыхания автора Барди Марко

Физиология дыхания Дыхание состоит из двух фаз: вдох и выдох. Во время вдоха сокращаются мышцы диафрагмы и межреберные мышцы. Диафрагма прогибается вниз, надавливая на органы брюшной полости и увеличивая объем грудной клетки; в результате сокращения межреберных мышц

Из книги С самого начала (путь тренера) автора Головихин Евгений Васильевич

Часть I. Физиология сердечно-легочной деятельности Кислород представляет собой «горючее», необходимое для осуществления всех энергетических процессов человеческого организма.Его значение для поддержания жизни было отмечено еще в 1777 году Антуаном Лавуазье, который,

Из книги Теория и методика подтягиваний (части 1-3) автора Кожуркин А. Н.

Глава 5. Адаптация мышечной ткани Уважаемые коллеги, как приятно, отработав 5–6 лет с группой спортсменов получить прекрасный качественный материал для спорта высших достижений. Каждый спортсмен представляет конечный результат, многолетней тренерской работы. Грамотно

Из книги Продуманный тренинг автора Макурин Андрей Викторович

Глава 6. Основы энергообеспечения мышечной деятельности в контактных стилях единоборств Вы наблюдаете за поединком. Отмечаете начало, спортсмены проводят ложные выпады, постоянно двигаются, готовят атаки, защищаются. Неожиданно один из спортсменов взрывается и наносит

Из книги Всестороннее руководство по развитию силы автора Хэтфилд Фредерик

2.3.2 Энергообеспечение мышечной деятельности. Таким образом, существует несколько способов энергообеспечения мышечной деятельности. Вопрос в том, в каком соотношении находятся пути ресинтеза АТФ при конкретной мышечной деятельности. Оказывается, это зависит от

Из книги Психология спорта автора Ильин Евгений Павлович

Физиология мышц Наверняка многие из вас могут усомниться в необходимости досконально изучить весь изложенный ниже материал. Рассмотрев в предыдущей главе функции, названия и общее понятие о мышцах в целом, уже можно понять, насколько знание всех этих моментов важны для

Из книги Успех или Позитивный образ мышления автора Богачев Филипп Олегович

В тренировках на увеличение размеров мышц варьирование - ключ к достижению максимального увеличения мышечной массы. Используйте все приводимые методики, меняя их как во время подхода, так и между подходами. Для троеборцев увеличение размеров мышц за счет мышечной

Из книги Аэробика для груди автора Гаткин Евгений Яковлевич

ГЛАВА 1 Психология деятельности спортсмена Спорт – это специфический вид человеческой деятельности и в то же время – социальное явление, способствующее поднятию престижа не только отдельных личностей, но и целых общностей, в том числе и государства.В настоящее время

Из книги Библия велосипедиста автора Фрил Джо

Из книги К бою готов! Стрессоустойчивость в рукопашном бою автора Кадочников Алексей Алексеевич

Из книги Равновесие в движении. Посадка всадника автора Дитце Сюзанна фон

Из книги Всё о лошадях [Полное руководство по правильному уходу, кормлению, содержанию, выездке] автора Скрипник Игорь

Из книги Теория получаса: как похудеть за 30 минут в день автора Майклз Элизабет

Глава 1 Условия деятельности в рукопашном бою Психология рукопашного боя призвана изучать закономерности проявления и развития психики человека, формирования психологии деятельности личности в специфических условиях военно-прикладной деятельности. К деятельности в

Из книги автора

2. Физиология движения 2.1. Суставы: строение, функции и биомеханика Сустав представляет собой подвижное соединение двух костей. Строение суставов обеспечивает выполнение движений, их направление и амплитуду. Рис. 2.1. Схема сустава: 1 - головка сустава; 2 - хрящ; 3 -

Энергетика мышечной деятельности.

Одно мышечное волокно может содержать 15 миллиардов толстых нитей. При том, что мышечные волокна активно сокращаются, в каждой толстой нити распадаются примерно 2500 молекул АТФ (нуклеотид, играющий важную роль в обмене энергии и веществ в организме) в секунду. Даже небольшие скелетные мышцы содержат тысячи мышечных волокон.

Основной функцией АТФ является передача энергии из одного места в другое, а не долгосрочное хранение энергии. В состоянии покоя скелетные мышечные волокна производят больше АТФ, чем они нуждается. В этих условиях АТФ передает энергию креатина. Креатин представляет собой небольшую молекулу, которую мышечные клетки собирают из фрагментов аминокислот. Передача энергии создает еще одно высокоэнергетическое соединение креатин фосфата (КФ).

АТФ + креатин АДФ + креатин фосфат

Во время мышечного сокращения происходит разрыв соединений АТФ, в результате этого образуется аденозиндифосфат (АДФ). Энергия, запасенная в креатинфосфате затем используется для «перезарядки» АДФ, превращая его обратно в АТФ через обратную реакцию.


АДФ + креатин фосфат + креатин

Фермент креатинфосфокиназа (КФК) облегчает эту реакцию. Когда мышечные клетки повреждены, происходит утечка КФК через клеточные мембраны в кровоток. Таким образом, высокая концентрация в крови КФК обычно указывает на серьезное повреждение мышц.

Отдыхающие скелетные мышечные волокна содержат примерно в шесть раз больше креатин фосфата как АТФ. Но когда мышечные волокна переживают устойчивое напряжение, эти энергетические запасы будут исчерпаны всего лишь примерно за 15 секунд. Мышечные волокна должны затем полагаться на другие механизмы для преобразования АДФ в АТФ.

Большинство клеток в организме генерируют АТФ через аэробный метаболизм в митохондриях и через гликолиз в цитоплазме. Аэробный метаболизм (сопровождающийся потреблением кислорода) обычно обеспечивает 95 % АТФ в покоящейся клетке. В этом процессе митохондрии поглощают кислород, АДФ, ионы фосфата и органические субстраты от окружающей цитоплазмы. Субстраты затем вводят цикл трикарбоновых кислот (также известный как цикл лимонной кислоты или цикл Кребса), ферментативный путь, который разрушает органические молекулы. Атомы углерода выпускаются, как двуокись углерода, атомы водорода курсируются дыхательными ферментами во внутренней митохондриальной мембране, где их электроны удаляются. После серии промежуточных шагов, протоны и электроны сочетаются с кислородом и образованием воды. В этом эффективном процессе высвобождается большое количество энергии и используется для создания АТФ.

Отдыхающие скелетные мышечные волокна полагаются почти исключительно на аэробный метаболизм жирных кислот, чтобы генерировать АТФ. Когда мышца начинает сжиматься, митохондрии начинают разрушение молекулы пировиноградной кислоты вместо жирных кислот. Пировиноградная кислота обеспечивается ферментативным путем гликолиза. Гликолиз является распадом глюкозы до пировиноградной кислоты в цитоплазме клетки. Этот процесс называется анаэробным, потому что он не требует кислорода. Гликолиз обеспечивает увеличение АТФ и генерирует 2 молекулы пировиноградной кислоты из каждой молекулы глюкозы. АТФ образуется в процессе гликолиза. Поскольку гликолиз может протекать в отсутствие кислорода, он может быть особенно важен, когда наличие кислорода ограничивает скорость производства митохондриальной АТФ. В большинстве скелетных мышц гликолиз является основным источником АТФ во время пиковых периодов активности. Расщепление глюкозы в этих условиях происходит в основном из резервов гликогена в саркоплазме. Гликоген представляет собой полисахарид цепочек молекул глюкозы. Типичные волокна скелетных мышц содержат большие запасы гликогена, которые могут составлять 1,5 % от общего веса мышц.

Энергопотребление и уровень мышечной активности.

В скелетных мышцах, при нахождении их в состоянии покоя, спрос на АТФ является низким. Более чем достаточно доступного кислорода митохондриям для удовлетворения этого спроса, в итоге они производят избыток АТФ. Дополнительный АТФ используется для создания запасов гликогена. Отдыхающие мышечные волокна поглощают жирные кислоты и глюкозу, которые доставляются кровотоком. Жирные кислоты расщепляются в митохондриях и АТФ генерируется для преобразования креатина в креатин фосфат и глюкозы в гликоген.

При умеренных уровнях физической активности увеличивается потребность в АТФ. Этот спрос удовлетворяется за счет митохондрий, когда скорость производства митохондриальной АТФ повышается, что увеличивает скорость потребления кислорода. Наличие кислорода не является ограничивающим фактором, потому что кислород может диффундировать (соединяться, смешиваться) в мышечном волокне достаточно быстро, чтобы удовлетворить митохондриальные потребности. Скелетные мышцы в этот момент зависят главным образом от аэробного метаболизма пировиноградной кислоты, чтобы генерировать АТФ. Пировиноградная кислота образуется в процессе гликолиза, который расщепляет молекулы глюкозы, полученные из гликогена в мышечных волокнах. Если запасы гликогена низки, мышечное волокно может также расщипить и другие субстраты, такие как липиды или аминокислоты. Пока спрос на АТФ может быть удовлетворен путем митохондриальной активности, обеспечивание АТФ гликолизом остается незначительным в общем энергетическом процессе мышечного волокна.

В пиковые уровни активности требуется много АТФ, в результате чего производство АТФ в митохондриях возрастает до максимума. Это максимальная скорость определяется наличием кислорода, а кислород не может диффундировать в мышечных волоконах достаточно быстро, чтобы дать возможность митохондрии для образования требуемого АТФ. В пиковых уровнях нагрузки митохондриальная активность может обеспечить лишь около одной трети от необходимого АТФ. Остальная часть приходится на гликолиз.

Когда гликолиз производит пировиноградную кислоту быстрее, чем она может быть использована в митохондрии, увеличивается уровень пировиноградной кислоты в саркоплазме. В этих условиях пировиноградная кислота превращается в молочную кислоту.

Анаэробный процесс гликолиза позволяет клетке генерировать дополнительный АТФ, когда митохондрии не в состоянии удовлетворить текущие потребности в энергии. Тем не менее, производство анаэробной энергии имеет свои недостатки:

Молочная кислота представляет собой органическую кислоту, которая в жидкостях организма
диссоциирует на ионы водорода и отрицательно заряженного иона лактата. Таким образом, производство молочной кислоты может привести к снижению внутриклеточного рН. Буферы в саркоплазме могут противостоять рН сдвигам, но эти защиты ограничены. В конце концов изменения рН будут изменять функциональные характеристики ключевых ферментов.
Гликолиз является относительно неэффективным способом для генерации АТФ. В анаэробных условиях каждая молекула глюкозы генерирует 2 молекулы пировиноградной кислоты, которые превращаются в молочную кислоту. В свою очередь, клетка получает 2 молекулы АТФ через гликолиз. Если бы те молекулы пировиноградной кислоты катаболизировались бы аэробным способом в митохондриях, клетка получила бы 34 дополнительных молекул АТФ.


Мышечная усталость. Скелетные мышечные волокна устают тогда, когда они больше не могут сокращаться, несмотря на продолжение нервного импульса. Причина мышечной усталости изменяется в зависимости от уровня активности мышц. После коротких пиковых уровней деятельности, например таких, как 100-метровый забег на время, усталость может быть
результатом исчерпания запасов АТФ или от падения рН, который сопровождается накоплением молочной кислоты. После длительных напряжений, таких как марафон, усталость может включать физические повреждения саркоплазматического ретикулума, что мешает регуляции внутриклеточных + концентрации ионов Ca2. Мышечная усталость накапливается и последствия этого становятся более выраженными, поскольку все больше мышечных волокон начинают задействоваться этим состоянием. Результатом является постепенное снижение возможностей всех скелетных мышц.

Если мышечное волокно сокращается при умеренных уровнях и запросы АТФ могут быть удовлетворены через аэробный метаболизм, усталость не произойдет, пока запасы гликогена, липидов и аминокислот не будут исчерпаны. Этот тип усталости происходит с мышцами спортсменов долгих нагрузок, таких как марафонцы, после нескольких часов забегов на длинные дистанции.

Когда мышца производит внезапный, интенсивный всплеск активности на пиковых уровнях, большая часть АТФ обеспечивается путем гликолиза. После нескольких секунд до минуты, повышение уровня молочной кислоты снижает рН тканей и мышцы больше не могут функционировать нормально. Спортсмены, которые испытывают быстрые мощные нагрузки, такие как спринтеры в 100-метровом забеге, получают как раз этот тип мышечной усталости.


Для нормальной функциональности мышц требуется: 1) существенные внутриклеточные энергетические запасы, 2) нормальное кровообращение и 3) нормальная концентрация кислорода в крови. Все, что препятствует одному или более из этих факторов, будет способствовать преждевременной усталости мышц. Например, снижение кровотока от тесной одежды, расстройство кровообращения или потеря крови замедляет доставку кислорода и питательных веществ, ускоряя при этом накопление молочной кислоты, а также способствует мышечной усталости.

Восстановительный период. При сокращении мышечных волокон условия в саркоплазме меняются. Потребляются энергетические запасы, выделяется тепло и, если сокращение было пиковым, генерируется молочная. В период восстановления, условия в мышечных волокнах возвращаются к нормальным. Может занять несколько часов для того,чтобы мышечные волокона оправились от периода умеренной активности. После длительной деятельности на более высоких уровнях активности, полное восстановление может занять неделю. В период восстановления, когда кислорода имеется в изобилии, молочная кислота может быть переработана путем конвертации обратно в пировиноградную кислоту.

Пировиноградная кислота может быть использована или митохондрией для генерации АТФ, или в качестве субстрата для ферментов, которые синтезируют глюкозу и восстанавливают запасы гликогена.


В период нагрузок молочная кислота диффундирует из мышечных волокон в кровоток. Этот процесс продолжается после того, как напряжение закончилось, потому что внутриклеточные концентрации молочной кислоты все еще относительно высоки. Печень поглощает молочную кислоту и преобразует ее в пировиноградную кислоту. Приблизительно 30% этих молекул пировиноградной кислоты расщепляются, обеспечивая АТФ, необходимый для превращения других молекул пировиноградной кислоты в глюкозу. Молекулы глюкозы затем выпускаются в обращение, где они поглощаются скелетными мышечными волокнами и используются для восстановления их запасов гликогена. Эта перетасовка молочной кислоты в печени и глюкозы к мышечным клеткам называется циклом Кори.

В период восстановления кислород легко доступен и потребность тела в кислороде остается повышенной, выше нормального уровня покоя. Восстановительный период подпитывается от АТФ. Чем больше АТФ требуется, тем больше кислорода будет необходимо. Кислородный долг или избыточное послетренировочное потребление кислорода, созданное во время физических упражнений, является тем самым количеством кислорода, которое необходимо для нормального восстановления. Скелетные мышечные волокна, которые должны восстановить АТФ, креатинфосфат и гликоген, в концентрации своих прежних уровнях и клетки печени, которые генерируют АТФ, необходимый для превращения избыточной молочной кислоты в глюкозу, несут ответственность за большую часть дополнительного потребления кислорода. В то время, как кислородный долг восполняется, частота и глубина дыхания увеличиваются. В результате, вы будете продолжать дышать тяжело достаточно долго после прекращения интенсивных тренировок.

Тепловые потери мышечной активности генерирует значительные объемы тепла. Когда происходит катаболическая реакция, например, при пробое гликогена или реакций гликолиза, мышечные волокна захватывают только часть выделенной энергии. Остальная высвобождается в виде тепла. Отдыхающие мышечные волокна, опирающиеся на аэробный метаболизм, захватывают около 42 % энергии, выделяемой в катаболизме. Другие 58 % согревают саркоплазму тканевой жидкости и циркулирующую кровь. Активные скелетные мышцы выпускают около 85 % тепла, необходимого для поддержания нормальной температуры тела.

Когда мышцы становятся активными, их энерго-потребление резко возрастает. Поскольку производство анаэробной энергии становится основным методом АТФ, мышечные волокна уже менее эффективно поглощают энергию. В пиковых уровнях нагрузки, только около 30 % от выделенной энергии сохраняется в виде АТФ, а остальные 70 % согревают мышцы и окружающие их ткани.

Гормоны и мышечный метаболизм. Метаболическая активность в скелетных мышечных волокнах регулируется гормонами эндокринной системы. Гормон роста из гипофиза и тестостерон (основной половой гормон у мужчин) стимулируют синтез сократительных белков и расширение скелетных мышц. Гормоны щитовидной железы поднимают скорость потребления энергии при отдыхе. Во время интенсивной физической активности, гормоны надпочечники, особенно адреналин, стимулируют мышечный обмен веществ и увеличивают продолжительность стимуляции и силу сокращения.

Прием-прием, есть кто? Азбука Бодибилдинга на связи! И в этот пятничный денек мы разберем необычную тему под названием электрическая активность мышц.

По прочтении Вы узнаете что такое ЭМГ как явление, для чего и в каких целях используется данный процесс, почему большинство исследований по “лучшести” упражнений оперируют именно данными электрической активности.

Итак, рассаживайтесь поудобней, будет интересно.

Электрическая активность мышц: вопросы и ответы

Эта уже вторая по счету статья в цикле “Muscle inside”, в первой мы говорили про , а в целом цикл посвящен явлениям и мероприятиям, которые протекают (могут протекать) внутри мускулов. Данные заметки позволят Вам лучше понимать накачательные процессы и быстрее прогрессировать в улучшении телосложения. Почему мы, собственно, решили рассказать именно про электрическую активность мышц? Все очень просто. В наших технических (и не только) статьях мы постоянно приводим списки из лучших упражнений, которые формируются именно на основании данных исследований по ЭМГ.

Вот уже на протяжении практически пяти лет, мы сообщаем Вам эту информацию, но ни разу за это время не раскрыли саму суть явления. Что же, сегодня мы восполним этот пробел.

Примечание:
Все дальнейшее повествование по теме электрическая активность мышц, будет разбито на подглавы.

Что такое электромиография? Замер активности мышц

ЭМГ представляет собой метод электродиагностической медицины для оценки и регистрации электрической активности, создаваемой скелетными мышцами. Процедура ЭМГ выполняется с использованием прибора, называемого электромиографом, для создания записи, называемой электромиограммой. Электромиограф обнаруживает электрический потенциал, генерируемый мышечными клетками, когда они электрически или неврологически активированы. Для понимания сути явления ЭМГ необходимо иметь представление о структуре мышц и протекающих внутри процессах.

Мышца представляет собой организованную “коллекцию” мышечных волокон (м.в.) , которые, в свою очередь, состоят из групп компонентов, известных как миофибриллы. В костно-скелетной системе нервные волокна инициируют электрические импульсы в м.в., известные как потенциалы действия мышц. Они создают химические взаимодействия, которые активируют сокращение миофибрилл. Чем больше активированных волокон в мышечной части, тем сильнее сокращение, которое может произвести мускул. Мышцы могут только создавать усилие при своем сокращении/укорочении. Тяговое и толкающее усилие в костно-мышечной системе генерируется сопряжением мышц, которые действуют в антагонистической модели: одна мышца сокращается, а другая расслабляется. Например, при подъеме гантели на бицепс, двуглавая мышца плеча при подъеме снаряда сокращается/укорачивается, а трицепс (антагонист) находится в расслабленном состоянии.

ЭМГ в различных видах спорта

Метод оценки основной мышечной активности, возникающей при физическом движении, получил широкое распространение во многих видах спорта, особенно фитнесе и бодибилдинге. Измеряя количество и величину импульсов, возникающих во время мышечной активации, можно оценить, насколько стимулируется мышечная единица, чтобы придать особую силу. Электромиограмма представляет собой визуальную иллюстрацию сигналов, генерируемых во время мышечной активности. И далее по тексту мы рассмотрим некоторые “портреты” ЭМГ.

Процедура ЭМГ. Из чего она состоит и где проводится?

В большинстве своем замерить электрическую активность мышц возможно только в специальных научно-исследовательских спортивных лабораториях, т.е. профильных учреждениях. Современные фитнес-клубы не предоставляют такой возможности ввиду отсутствия квалифицированных специалистов и низкой востребованности со стороны аудитории клуба.

Сама процедура состоит из:

  • размещения на теле человека в определенной области (на или рядом с исследуемой мышечной группой) специальных электродов, подсоединенных к блоку, измеряющему электрические импульсы;
  • запись и передача сигналов в компьютер через блок беспроводной передачи данных ЭМГ от расположенных поверхностных электродов для последующего отображения и анализа.

В картинном варианте процедура ЭМГ выглядит следующим образом.


Мышечная ткань в состоянии покоя электрически неактивна. Когда мышца добровольно сжимается, начинают появляться потенциалы действия. По мере увеличения силы сокращения мышц все больше и больше мышечных волокон вырабатывают потенциалы действия. Когда мышца полностью сжимается, должна появиться беспорядочная группа потенциалов действия с различными скоростями и амплитудами (полный набор и интерференционная картина) .

Таким образом, процесс получения картинки сводится к тому, что испытуемый выполняет конкретное упражнение по конкретной схеме (сеты/повторения/отдых) , а приборы фиксируют генерируемые мышцами электрические импульсы. В конечном итоге результаты отображаются на экране ПК в виде определенного графика импульсов.

Чистота результатов ЭМГ и понятие MVC

Как Вы, наверное, помните из наших технических заметок, иногда мы приводили разные значения по электрической активности мышц даже для одного и того же упражнения. Это связано с тонкостями проведения самой процедуры. В целом на конечные результаты оказывает влияние ряд факторов:

  • выбор конкретной мышцы;
  • размер самой мышцы (у мужчин и женщин разные объемы) ;
  • правильное размещение электрода (в конкретном месте поверхностной мышцы – брюшко мышцы, продольная средняя линия) ;
  • процент жира в организме человека (чем больше жира, тем слабее сигнал ЭМГ) ;
  • толщина – насколько сильно ЦНС генерирует сигнал, насколько быстро он поступает в мускул;
  • стаж тренировок – насколько у человека хорошо развита .

Таким образом, ввиду указанных начальных условий разные исследования могут давать разные результаты.

Примечание:

Более точные результаты активности мышц в конкретном движении дает внутримышечный метод оценки. Это когда игольчатый электрод вводят через кожу в мышечную ткань. Игла затем перемещается в несколько точек в расслабленной мышце, чтобы оценить как активность вставки, так и активность покоя в мышцах. Оценивая активность покоя и вставки, электромиограф оценивает активность мышц во время добровольного сокращения. По форме, размеру и частоте результирующих электрических сигналов судят о степени активности конкретной мышцы.

В процедуре электромиографии одной из основных ее функций является то, как хорошо можно активировать мышцу. Наиболее распространенный способ это выполнение максимального добровольного сокращения (MVC) тестируемой мышцы. Именно MVC, в большинстве исследований, принимается как наиболее достоверное средство анализа пиковой силы и силы, создаваемой мышцами.

Однако наиболее полную картину по активности мышц способно дать предоставление обоих наборов данных (MVC и ARV – средние) значений ЭМГ.

Собственно, с теоретической частью заметки разобрались, теперь окунемся в практику.

Электрическая активность мышц: лучшие упражнения для каждой мышечной группы, результаты исследований

Сейчас мы начнем собирать шишки:) от нашей многоуважаемой аудитории, и все потому, что займемся неблагодарным занятием – доказыванием того, что конкретное упражнение является лучшим для конкретной мышечной группы.

А почему оно неблагодарное, Вы поймете по ходу повествования.

Итак, принимая показания ЭМГ во время различных упражнений, мы можем нарисовать иллюстративную картину уровня активности и возбуждения внутри мышцы. Это может указывать, насколько эффективным является конкретное упражнение при стимуляции конкретного мускула.

I. Результаты исследований (профессор Tudor Bompa, Mauro Di Pasquale, Италия 2014)

Данные представлены по шаблону, мышечная группа-упражнение-процент активации м.в.:

Примечание:

Процентное значение указывает пропорцию активированных волокон, значение 100% означает полную активацию.

№1. Широчайшие мышцы спины:

  • 91 ;
  • 89 ;
  • 86 ;
  • 83 .

№2. Грудные мышцы (большая пекторальная) :

  • 93 ;
  • 87 ;
  • 85 ;
  • 84 .

№3. Передняя дельта:

  • жим гантелей стоя – 79 ;
  • 73 .

№4. Средняя/боковая дельта:

  • подъемы прямых рук через стороны с гантелями – 63 ;
  • подъемы прямых рук через стороны на верхнем блоке кроссовера – 47 .

№5. Задняя дельта:

  • разведение рук в наклоне стоя с гантелями - 85 ;
  • разведение рук в наклоне стоя с нижнего блока кроссовера – 77 .

№6. Бицепс (длинная головка) :

  • сгибание рук на скамье Скотта с гантелями – 90 ;
  • сгибание рук с гантелями сидя на скамье под углом вверх - 88 ;
  • (узкий хват) – 86 ;
  • 84 ;
  • 80 .

№7. Квадрицепс (прямая мышца бедра) :

  • 88 ;
  • 86 ;
  • 78 ;
  • 76 .

№8. Задняя поверхность (бицепс) бедра:

  • 82 ;
  • 56 .

№9. Задняя поверхность (полусухожильная мышца) бедра:

  • 88 ;
  • становая тяга на прямых ногах – 63 .

С уважением и признательностью, Протасов Дмитрий .

Выбор редакции
Обобщающий урок по теме: «Жизнь дана на добрые дела». Задачи уроков: обобщить знания о юмористических произведениях (знать особенности...

Для изучения сегодняшней темы нам необходимо повторить, какое уравнение называется уравнением-следствием, какие теоремы «беспокойные» и...

Самостоятельная работа по теме: I вариант 1. Для предельных углеводородов характерны реакции: а) горения, б) замещения, в)...

Юргамышский филиал ГБПОУ «Курганский базовый медицинский колледж» Сборник самостоятельных работ по химии по разделу «Непредельные...
КОММУНИКАЦИЯ ВОДНЫХ Млекопитающих Звуки как сигналы. имеют уши, состоящие из наружного отверстия, среднего уха с тремя слуховыми...
Бороздя просторы интернета, я наткнулся на фото одной интересной птички. Она меня просто потрясла своим красочным оперением, которое...
Сытно, вкусно, просто тает во рту! В ней заключены все детские мечты! Но не только малыши влюблены в этот продукт, мы все легко...
Канарский канареечный вьюрок или Serinus canaria - подробное описание, фото, видео, особенности содержания и разведения в домашних...
Чайки у многих людей ассоциируются с морем, и по этой причине воспеты в стихах, художественных и музыкальных произведениях. Орнитологами...