Понятие следствия уравнения. Посторонние корни. Презентация "Равносильность уравнений. Уравнение %U2013 следствие" Какое уравнение является следствием другого


Для изучения сегодняшней темы нам необходимо повторить, какое уравнение называется уравнением-следствием, какие теоремы «беспокойные» и из каких этапов состоит решение любого уравнения.

Определение. Если каждый корень уравнения эф от икс равно же от икс (обозначим его цифрой один) является в то же время корнем уравнения пэ от икс, равное аш от икс (обозначим его цифрой два), то уравнение два называют следствием уравнения один.

Теорема четвертая. Если обе части уравнения эф от икс равно же от иксумножить на одно и то же выражение аш от икс, которое:

Во- первых, имеет смысл всюду в области определения (в области допустимых значений) уравнения эф от икс, равное же от икс.

Во-вторых, нигде в этой области не обращается в нуль, то получится уравнение эф от икс, умноженное на аш от икс равно же от икс, умноженное на аш от икс, равносильное данному в его ОДЗ.

Следствием теоремы четыре является еще одно «спокойное» утверждение: если обе части уравнения умножить или разделить на одно и то же отличное от нуля число, то получится уравнение, равносильное данному.

Теорема пятая . Если обе части уравнения

эф от икс равно же от икснеотрицательны в ОДЗ уравнения, то после возведения обеих его частей в одну и ту же четную степень n получится уравнение эф от икс в энной степени равно же от иксв энной степени равносильное данному уравнению в его о дэ зэ.

Теорема шестая . Пусть а больше нуля, а не равное единице, и эф от икс больше нуля,

жэ от икс больше нуля,тологарифмическое уравнение логарифм эф от икс по основанию а, равное логарифму жэ от икс по основанию а,

равносильно уравнению эф от икс равно же от икс.

Как мы уже говорили, решение любых уравнений происходит в три этапа:

Первый этап — технический. С помощью цепочки преобразований от исходного уравнения мы приходим к достаточно простому уравнению, которое решаем и находим корни.

Второй этап — анализ решения. Анализируем преобразования, которые выполнили, и выясняем, равносильны ли они.

Третий этап — проверка. Проверка всех найденных корней их подстановкой в исходное уравнение обязательна при выполнении преобразований, которые могут привести к уравнению-следствию.

На этом уроке мы выясним, при применении каких преобразований данное уравнение переходит в уравнение-следствие? Рассмотрим следующие задания.

Задание 1

Какое уравнение является следствием уравнения икс минус три равно двум?

Решение

Уравнение икс минус три равно двум имеет единственный корень — икс равно пяти. Умножим обе части этого уравнения на выражение икс минус шесть, приведем подобные слагаемые и получим квадратное уравнение икс квадрат минус одиннадцать икс плюс тридцать равно нулю. Вычислим его корни: икс первое равно пяти; икс второе равно шести. Оно уже содержит два корня. Уравнение икс квадрат минус одиннадцать икс плюс тридцать равно нулю содержит единственный корень — икс равно пяти; уравнения икс минус три равно двум, поэтому икс квадрат минус одиннадцать икс плюс тридцать является следствием уравнения икс минус три равно двум.

Задание 2

Какое еще уравнение является следствием уравнения х-3=2?

Решение

В уравнении икс минус три равно двум возведем в квадрат его обе части, применим формулу квадрата разности, приведем подобные слагаемые, получим квадратное уравнение икс квадрат минус шесть икс плюс пять равно нулю.

Вычислим его корни: икс первое равно пяти, икс второе равно единице.

Корень икс равно единице является посторонним для уравнения икс минус три равно двум. Это получилось потому, что обе части исходного уравнения возвели в квадрат (четная степень). Но при этом его левая часть — икс минус три — может быть отрицательной (нарушены условия теоремы пять ). Значит, уравнение икс квадрат минус шесть икс плюс пять равно нулю является следствием уравнения икс минус три равно двум.

Задание 3

Найти уравнение-следствие для уравнения

логарифм выражения икс плюс один по основанию три плюс логарифм выражения икс плюс три по основанию три равно единице.

Решение

Представим единицу как логарифм трех по основанию три, потенцируем логарифмическое уравнение, выполним умножение, приведем подобные слагаемые и получим квадратное уравнение икс квадрат плюс четыре икс равно нулю. Вычислим его корни: икс первое равно нулю, икс второе равно минус четырем. Корень икс равно минус четырем является посторонним для логарифмического уравнения, так как при подстановке его в логарифмическое уравнение выражения икс плюс один и икс плюс три принимают отрицательные значения — нарушены условия теоремы шесть .

Значит, уравнение икс квадрат плюс четыре икс равно нулю является следствием данного уравнения.

На основании решения этих примеров, мы можем сделать вывод : уравнение-следствие получается из данного уравнения путем расширения области определения уравнения. А это возможно при выполнении таких преобразований, как

1)избавление от знаменателей, содержащих переменную величину;

2)возведение обеих частей уравнения в одну и ту же четную степень;

3)освобождение от знаков логарифмов.

Запомните!Если в процессе решения уравнения произошло расширение области определения уравнения, то обязательна проверка всех найденных корней.

Задание 4

Решить уравнение икс минус три, деленное на икс минус пять, плюс один, деленное на икс, равно икс плюс пять, деленное на икс, умноженное на икс минус пять.

Решение

Первый этап - технический.

Выполним цепочку преобразований, получим наиболее простое уравнение и решим его. Для этого умножим обе части уравнения на общий знаменатель дробей, то есть на выражение икс умноженное на иксминус пять.

Получим квадратное уравнение икс квадрат минус три икс минус десять равно нулю. Вычислим корни: икс первое равно пяти, икс второе равно минус двум.

Второй этап- анализ решения.

При решении уравнения, мы его обе части умножили на выражение, содержащее переменную. Значит, область определения уравнения расширилась. Поэтому проверка корней обязательна.

Третий этап - проверка.

При икс равном минусдваобщийзнаменатель не обращается в нуль. Значит, икс равно минусдваявляется корнем данного уравнения.

При икс равном пяти общий знаменатель обращается в нуль. Поэтому икс равно пяти - посторонний корень.

Ответ: минус два.

Задание 5

Решить уравнение квадратный корень из икс минус шесть равно квадратному корню из четырех минус икс.

Решение

Первый этап — технический.

Для того чтобы получить простое уравнение и решить его, выполним цепочку преобразований.

Возведем в квадрат (четная степень) обе части этого уравнения, перенесем иксы в левую часть, а числа в правую часть уравнения, приведем подобные слагаемые, получим: два икс равно десяти. Икс равен пяти.

Второй этап- анализ решения.

Проверим выполненные преобразования на равносильность.

При решении уравнения, мы его обе части возвели в квадрат. Значит, область определения уравнения расширилась. Поэтому проверка корней обязательна.

Третий этап - проверка.

Подставим найденные корни в исходное уравнение.

Если икс равен пяти, выражение квадратный корень из четырех минус икс не определено, поэтому икс, равный пяти - посторонний корень. Значит, данное уравнение не имеет корней.

Ответ: уравнение корней не имеет.

Задание 6

Решить уравнение натуральный логарифм выражения икс квадрат плюс два икс минус семь равно натуральному логарифму выражения икс минус один.

Решение

Первый этап — технический.

Выполним цепочку преобразований, получим наиболее простое уравнение и решим его. Для этого потенцируем

уравнение, перенесем все слагаемые в левую часть уравнения, приведем подобные члены, получим квадратное уравнение икс квадрат плюс икс минус шесть равно нулю. Вычислим корни: икс первое равно двум, икс второе равно минус трем.

Второй этап - анализ решения.

Проверим выполненные преобразования на равносильность.

В процессе решения данного уравнения мы освободились от знаков логарифмов. Значит, область определения уравнения расширилась. Поэтому проверка корней обязательна.

Третий этап - проверка.

Подставим найденные корни в исходное уравнение.

Если икс равен двум, то получаем натуральный логарифм единицы равен натуральному логарифму единицы —

верное равенство.

Значит, икс равный двум - корень данного уравнения.

Если икс равен минус трем, то натуральный логарифм выражения икс квадрат плюс два икс минус семь и натуральный логарифм выражения икс минус один не определены. Значит, икс равный минус трем — посторонний корень.

Ответ: два.

Всегда ли нужно при решении уравнения выделять три этапа? Каким еще способом можно выполнить проверку?

Ответы на эти вопросы мы получим на следующем уроке.

В презентации продолжим рассмотрение равносильных уравнений, теорем, остановимся более подробно на этапах решения таких уравнений.

Для начала вспомним условие, при котором одно из уравнений является следствием другого (слайд 1). Автор приводит еще раз некоторые теоремы о равносильных уравнениях, которые были рассмотрены ранее: об умножении частей уравнения на одинаковое значение h (x); возведение частей уравнения в одинаковую четную степень; получение равносильного уравнения из уравнения log a f(x) = log a g (x).

На 5-м слайде презентации выделены основные этапы, с помощью которых удобно решать равносильные уравнения:

Найти решения равносильного уравнения;

Проанализировать решения;

Проверить.


Рассмотрим пример 1. Необходимо найти следствие уравнения x - 3 = 2. Найдем корень уравнения x = 5. Запишем равносильное уравнение (x - 3)(x - 6) = 2(x - 6), применив способ умножения частей уравнения на (x - 6). Упростив выражение до вида x 2 - 11x +30 = 0, найдем корни x 1 = 5, x 2 = 6. Т.к. каждый корень уравнения x - 3 = 2 является также решением уравнения x 2 - 11x +30 = 0, то x 2 - 11x +30 = 0 - это уравнение-следствие.


Пример 2. Найти другое следствие уравнения x - 3 = 2. Для получения равносильного уравнения используем метод возведения в четную степень. Упростив полученное выражение, запишем x 2 - 6x +5 = 0. Найдем корни уравнения x 1 = 5, x 2 = 1. Т.к. x = 5 (корень уравнения x - 3 = 2) является также решением уравнения x 2 - 6x +5 = 0, то уравнение x 2 - 6x +5 = 0 также является уравнением-следствием.


Пример 3. Необходимо найти следствие уравнения log 3 (x + 1) + log 3 (x + 3) = 1.

Заменим в уравнении 1 = log 3 3. Тогда, применяя утверждение из теоремы 6, запишем равносильное уравнение (x + 1)(x +3) = 3. Упростив выражение, получим x 2 + 4x = 0, где корнями будут x 1 = 0, x 2 = - 4. Значит уравнение x 2 + 4x = 0 - следствие для заданного уравнения log 3 (x + 1) + log 3 (x + 3) = 1.


Итак, можно сделать вывод: если расширяется область определения уравнения, то получается уравнение-следствие. Выделим стандартные действия при нахождении уравнения-следствия:

Избавление от знаменателей, которые содержат переменную;

Возведение частей уравнения в одинаковую четную степень;

Освобождение от логарифмических знаков.

Но важно запомнить: когда в ходе решения расширяется область определения уравнения, то необходимо проверить всех найденные корни - будут ли они попадать в ОДЗ.


Пример 4. Решить уравнение, представленное на слайде 12. Вначале найдем корни равносильного уравнения x 1 = 5, x 2 = - 2 (первый этап). Необходимо обязательно проверить корни (второй этап). Проверка корней (третий этап): x 1 = 5 не принадлежит области допустимых значений заданного уравнения, поэтому уравнение имеет одно решение только x = - 2.


В примере 5 найденный корень равносильного уравнения не входит в ОДЗ заданного уравнения. В примере 6 значение одного из двух найденных корней не определено, поэтому этот корень не является решением исходного уравнения.

Класс: 11

Продолжительность: 2 урока.

Цель урока:

  • (для учителя) формирование у учащихся целостного представления о методах решения иррациональных уравнений.
  • (для учащихся) Развитие умения наблюдать, сравнивать, обобщать, анализировать математические ситуации (слайд 2). Подготовка к ЕГЭ.

План первого урока (слайд 3)

  1. Актуализация знаний
  2. Разбор теории: Возведение уравнения в чётную степень
  3. Практикум по решению уравнений

План второго урока

  1. Дифференцированная самостоятельная работа по группам «Иррациональные уравнения на ЕГЭ»
  2. Итог уроков
  3. Домашнее задание

Ход уроков

I. Актуализация знаний

Цель: повторить понятия, необходимые для успешного освоения темы урока.

Фронтальный опрос.

– Какие два уравнения называются равносильными?

– Какие преобразования уравнения называют равносильными?

– Данное уравнение заменить равносильным с пояснением применённого преобразования: (слайд 4)

а) х+ 2х +1; б) 5 = 5; в) 12х = -3; г) х = 32; д) = -4.

– Какое уравнение называют уравнением-следствием исходного уравнения?

– Может ли уравнение-следствие иметь корень, не являющийся корнем исходного уравнения? Как называются эти корни?

– Какие преобразования уравнения приводят к уравнениям-следствиям?

– Что называется арифметическим квадратным корнем?

Остановимся сегодня более подробно на преобразовании «Возведение уравнения в чётную степень».

II. Разбор теории: Возведение уравнения в чётную степень

Объяснение учителя при активном участии учащихся:

Пусть 2 m (m N) – фиксированное чётное натуральное число. Тогда следствием уравнения f(x) = g(x) является уравнение (f(x)) = (g(x)).

Очень часто это утверждение применяется при решении иррациональных уравнений.

Определение. Уравнение, содержащее неизвестное под знаком корня, называется иррациональным.

При решении иррациональных уравнений используют следующие методы: (слайд 5)

Внимание! Методы 2 и 3 требуют обязательной проверки.

ОДЗ не всегда помогает устранить посторонние корни.

Вывод: при решении иррациональных уравнений важно пройти три этапа: технический, анализ решения, проверка(слайд 6).

III. Практикум по решению уравнений

Решить уравнение:

После обсуждения способа решения уравнения возведением в квадрат, решить переходом к равносильной системе.

Вывод : решение простейших уравнений с целыми корнями можно провести любым знакомым методом.

б) = х – 2

Решая методом возведения обеих частей уравнения в одну и ту же степень, учащиеся получают корни х = 0, х= 3 - , х= 3 + , проверить которые подстановкой сложно и трудоёмко. (Слайд 7). Переход к равносильной системе

позволяет быстро избавиться от посторонних корней. Условию х ≥ 2 удовлетворяет только х.

Ответ: 3 +

Вывод : иррациональные корни проверять лучше переходом к равносильной системе.

в) = х – 3

В процессе решения этого уравнения получаем два корня: 1 и 4. Оба корня удовлетворяют левой части уравнения, но при х = 1 нарушается определение арифметического квадратного корня. ОДЗ уравнения не помогает устранить посторонние корни. Переход к равносильной системе даёт правильный ответ.

Вывод: хорошее знание и понимание всех условий определения арифметического квадратного корня помогает перейти к выполнению равносильных преобразований.

Возведя обе части уравнения в квадрат, получим уравнение

х + 13 - 8 + 16 = 3 + 2х - х, уединив радикал в правую часть, получаем

26 – х + х = 8. Применение дальнейших действий по возведению в квадрат обеих частей уравнения, приведёт к уравнению 4-й степени. Переход к ОДЗ уравнения даёт хороший результат:

найдём ОДЗ уравнения:

х = 3.

Проверка: - 4 = , 0 = 0 верно.

Вывод: иногда возможно провести решение с помощью определения ОДЗ уравнения , но обязательно сделать проверку.

Решение: ОДЗ уравнения: -2 – х ≥ 0 х ≤ -2.

При х ≤ -2, < 0, а ≥ 0.

Следовательно, левая часть уравнения отрицательна, а правая – неотрицательна; поэтому исходное уравнение корней не имеет.

Ответ: корней нет.

Вывод: сделав правильные рассуждения по ограничению в условии уравнения, можно без труда найти корни уравнения, или установить, что их нет.

На примере решения этого уравнения показать двукратное возведение уравнения в квадрат, объяснить смысл фразы «уединение радикалов» и необходимость проверки найденных корней.

з) + = 1.

Решение этих уравнения провести методом замены переменной до момента возвращения к исходной переменной. Закончить решение предложить тем, кто раньше справится с заданиями следующего этапа.

Контрольные вопросы

  • Как решать простейшие иррациональные уравнения?
  • Что необходимо помнить при возведении уравнения в чётную степень? (могут появиться посторонние корни)
  • Как лучше проверять иррациональные корни? (с помощью ОДЗ и условий совпадения знаков обеих частей уравнения)
  • Для чего необходимо уметь анализировать математические ситуации при решении иррациональных уравнений? (Для правильного и быстрого выбора способа решения уравнения).

IV. Дифференцированная самостоятельная работа по группам «Иррациональные уравнения на ЕГЭ»

Класс разбивается на группы (по 2-3 человека) по уровням обученности, каждая группа выбирает себе вариант с заданием, обсуждает и решает выбранные задания. По мере необходимости обращается к учителю за консультацией. После выполнения всех заданий своего варианта и проверки ответов учителем, участники группы индивидуально заканчивают решение уравнений ж) и з) предыдущего этапа урока. Для 4 и 5 вариантов (после проверки ответов и решения учителем) на доске записаны дополнительные задания, которые выполняются индивидуально.

Все индивидуальные решения в конце уроков сдаются учителю на проверку.

Вариант 1

Решите уравнения:

а) = 6;
б) = 2;
в) = 2 – х;
г) (х + 1) (5 – х) (+ 2 = 4.

Вариант 5

1. Решите уравнение:

а) = ;
б) = 3 – 2х;

2. Решить систему уравнений:

Дополнительные задания:

V. Итог уроков

Какие трудности испытывали при выполнении заданий ЕГЭ? Что необходимо для устранения этих трудностей?

VI. Домашнее задание

Повторить теорию решения иррациональных уравнений, прочитать пункт 8.2 в учебнике (обратить внимание на пример 3).

Решить № 8.8 (а, в), № 8.9 (а, в), № 8.10 (а).

Литература:

  1. Никольский С.М., Потапов М.К., Н.Н. Решетников Н.Н., Шевкин А.В. Алгебра и начала математического анализа, учебник для 11 класса общеобразовательных учреждений, М.: Просвещение, 2009.
  2. Мордкович А.Г. О некоторых методических вопросах, связанных с решением уравнений. Математика в школе. -2006. -№3.
  3. М. Шабунин. Уравнения. Лекции для старшеклассников и абитуриентов. Москва, «Чистые пруды», 2005. (библиотечка «Первое сентября»)
  4. Э.Н. Балаян. Практикум по решению задач. Иррациональные уравнения, неравенства и системы. Ростов-на-Дону, «Феникс», 2006.
  5. Математика. Подготовка к ЕГЭ-2011. Под редакцией Ф.Ф. Лысенко, С.Ю. Кулабухова Легион-М, Ростов-на-Дону, 2010.

Муниципальное общеобразовательное учреждение

«Новоуколовская средняя общеобразовательная школа»

Красненского района Белгородской области

Урок алгебры в 11 классе

«Применение нескольких преобразований, приводящих к уравнению-следствию»

Подготовила и провела

Учитель математики

Харьковская Валентина Григорьевна

Алгебра 11 класс

Тема: Применение нескольких преобразований, приводящих к уравнению – следствию.

Цель: создать условия для закрепления материала по теме: «Применение нескольких преобразований, приводящих к уравнению – следствию»; р азвивать самостоятельность, воспитывать грамотность речи ; формировать вычислительные навыки обучающихся; выполнить задания соответствующие уровню ЕГЭ.

Оборудование: учебник, компьютер, карточки

Тип урока: урок комплексного применения ЗУН

Ход урока

    Оргмомент (Слайд 1)

Добрый день, ребята! Посмотрите на эти картинки, и выберите, какая из них вам понравилась больше всего. Я вижу, что вы как и я, пришли на урок с хорошим настроением, и думаю, оно останется таким же до конца урока. Хочу пожелать вам плодотворной работы.

Ребята, у каждого из вас на столе лежат оценочные листы, в которых вы будете оценивать себя на каждом этапе урока

    Проверка домашнего задания.(Слайд 2)

Высветить на слайде решения и дети выставляют себе оценки в

листок самоконтроля. Нет ошибок – «5», если 1 ошибка – «4», 2

ошибки – «3». Если получится много детей, у которых имеются 2

ошибки, то это задание прорешать у доски.

Объявление темы урока (Слайд 3). постановка целей урока

Тему нашего урока вы видите на слайде. Как вы думаете, чем

мы будем с вами сегодня заниматься на уроке?

Ну, что же, ребята, давайте вспомним пройденный материал .

Начнем с устной работы :

    Устная работа (Слайд 4)

    Какие уравнения называют уравнениями-следствиями? (если любой корень первого уравнения является корнем второго, то второе уравнение называют следствием первого);

    Что называют переходом к уравнению-следствию? (замену уравнения другим уравнением, которое является его следствием);

    Какие преобразования приводят к уравнению-следствию? Приведите примеры. (возведение уравнения в четную степень; потенцирование логарифмического уравнения; освобождение уравнения от знаменателя; приведение подобных членов уравнения; применение формул).

Решите уравнения (Слайд 5)

(уравнения высвечиваются на экране):

1) = 6; (ответ: 36)

2) = 3; (ответ: 11)

3) = 4; (ответ: 6)

4) = - 2; (ответ: нет решений, так как левая часть уравнения принимает только неотрицательные значения)

5) = 9; (ответ: -9 и 9)

6) = -2; (ответ: нет решений, так как сумма двух

неотрицательных чисел не может быть отрицательной)

Ребята, я думаю, вы заметили, что при выполнении домашнего задания и устной работы мы с вами встретили задания, соответствующие демоверсии, спецификации и кодификатору ЕГЭ.

4.Выполнение заданий

Ребята, давайте поработаем в тетрадях:

8.26 (а) – у доски

8.14 (в) – у доски

Физминутка для глаз (музыка)

8.8 (в)-у доски

8.9-(е)-у доски

5.Самостоятельная работа (Слайд 6)

Решение самостоятельной работы (Слайд 7)

6. Домашнее задание: выполнить №8.14 (г), задание ЕГЭ В5 в вариантах 21,23,25 (Слайд 8)

7.Итоги урока (Слайд 9)

8.Рефлексия (Слайд 10)

Анкета.

1. На уроке я работал

2. Своей работой на уроке я

3. Урок для меня показался

4. За урок я

5. Мое настроение

6. Материал урока мне был

7. Как вы думаете, справитесь на экзамене с такими заданиями?

8. Домашнее задание мне кажется

активно / пассивно

доволен / не доволен

коротким / длинным

не устал / устал

стало лучше / стало хуже

понятен / не понятен

полезен / бесполезен

интересен / скучен

да/нет/не знаю

легким / трудным

интересным / неинтересным

Использованные ресурсы:

    Никольский С.М., Потапов К.М., . Алгебра и начала математического анализа, 11 класс М.: Просвещение, 2010

    Сборник заданий для подготовки к ЕГЭ по математике

Выбор редакции
Обобщающий урок по теме: «Жизнь дана на добрые дела». Задачи уроков: обобщить знания о юмористических произведениях (знать особенности...

Для изучения сегодняшней темы нам необходимо повторить, какое уравнение называется уравнением-следствием, какие теоремы «беспокойные» и...

Самостоятельная работа по теме: I вариант 1. Для предельных углеводородов характерны реакции: а) горения, б) замещения, в)...

Юргамышский филиал ГБПОУ «Курганский базовый медицинский колледж» Сборник самостоятельных работ по химии по разделу «Непредельные...
КОММУНИКАЦИЯ ВОДНЫХ Млекопитающих Звуки как сигналы. имеют уши, состоящие из наружного отверстия, среднего уха с тремя слуховыми...
Бороздя просторы интернета, я наткнулся на фото одной интересной птички. Она меня просто потрясла своим красочным оперением, которое...
Сытно, вкусно, просто тает во рту! В ней заключены все детские мечты! Но не только малыши влюблены в этот продукт, мы все легко...
Канарский канареечный вьюрок или Serinus canaria - подробное описание, фото, видео, особенности содержания и разведения в домашних...
Чайки у многих людей ассоциируются с морем, и по этой причине воспеты в стихах, художественных и музыкальных произведениях. Орнитологами...