3 закон менделя формулировка кратко. Второй закон менделя. Какие виды скрещивания изучал Г. Мендель


Законы Менделя

Схема первого и второго закона Менделя. 1) Растение с белыми цветками (две копии рецессивного аллеля w) скрещивается с растением с красными цветками (две копии доминантного аллеля R). 2) У всех растений-потомков цветы красные и одинаковый генотип Rw. 3) При самооплодотворении у 3/4 растений второго поколения цветки красные (генотипы RR + 2Rw) и у 1/4 - белые (ww).

Законы Менделя - это принципы передачи наследственных признаков от родительских организмов к их потомкам, вытекающие из экспериментов Грегора Менделя . Эти принципы послужили основой для классической генетики и впоследствии были объяснены как следствие молекулярных механизмов наследственности. Хотя в русскоязычных учебниках обычно описывают три закона, «первый закон» не был открыт Менделем. Особое значение из открытых Менделем закономерностей имеет «гипотеза чистоты гамет» .

История

В начале XIX века Дж. Госс, экспериментируя с горохом, показал, что при скрещивании растений с зеленовато-голубыми горошинами и с желтовато-белыми в первом поколении получались жёлто-белые. Однако, при втором поколении, не проявляющиеся у гибридов первого поколения, и названные позже Менделем рецессивными признаки вновь проявлялись, причём растения с ними не давали расщепление при самоопылении .

О. Саржэ, проводя опыты на дынях сравнивал их по отдельным признакам(мякоть, кожура и т.д.) также установил отсутствие смешения признаков, которые не исчезали у потомков, а только перераспределялись среди них. Ш. Ноден , скрещивая различные виды дурмана, обнаружил преобладание признаков дурмана Datula tatula над Datura stramonium , причём это не зависело от того, какое растение материнское, а какое - отцовское .

Таким образом к середине XIX века было открыто явление доминантности, единообразие гибридов в первом поколении(все гибриды первого поколения похожи друг на друга), расщепление и комбинаторику признаков во втором поколении. Тем не менее, Мендель, высоко оценивая работы предшественников указывал, что всеобщего закона образования и развития гибридов ими не было найдено, и их опыты не обладают достаточной достоверностью для определения численных соотношений. Нахождение такого достоверного метода и математический анализ результатов, которые помогли создать теорию наследственности, является главной заслугой Менделя .

Методы и ход работы Менделя

  • Мендель изучал, как наследуются отдельные признаки.
  • Мендель выбрал из всех признаков только альтернативные - такие, которые имели у его сортов два чётко различающихся варианта (семена либо гладкие, либо морщинистые; промежуточных вариантов не бывает). Такое сознательное сужение задачи исследования позволило чётко установить общие закономерности наследования .
  • Мендель спланировал и провёл масштабный эксперимент. Им было получено от семеноводческих фирм 34 сорта гороха, из которых он отобрал 22 «чистых» (не дающих расщепления по изучаемым признакам при самоопылении) сорта. Затем он проводил искусственную гибридизацию сортов, а полученные гибриды скрещивал между собой. Он изучил наследование семи признаков, изучив в общей сложности около 20 000 гибридов второго поколения. Эксперимент облегчался удачным выбором объекта: горох в норме - самоопылитель , но легко проводить искусственную гибридизацию.
  • Мендель одним из первых в биологии использовал точные количественные методы для анализа данных. На основе знания теории вероятностей он понял необходимость анализа большого числа скрещиваний для устранения роли случайных отклонений.

Проявление у гибридов признака только одного из родителей Мендель назвал доминированием.

Закон единообразия гибридов первого поколения (первый закон Менделя) - при скрещивании двух гомозиготных организмов, относящихся к разным чистым линиям и отличающихся друг от друга по одной паре альтернативных проявлений признака, всё первое поколение гибридов (F1) окажется единообразным и будет нести проявление признака одного из родителей.

Этот закон также известен как «закон доминирования признаков». Его формулировка основывается на понятии чистой линии относительно исследуемого признака - на современном языке это означает гомозиготность особей по этому признаку. Мендель же формулировал чистоту признака как отсутствие проявлений противоположных признаков у всех потомков в нескольких поколениях данной особи при самоопылении.

При скрещивании чистых линий гороха с пурпурными цветками и гороха с белыми цветками Мендель заметил, что взошедшие потомки растений были все с пурпурными цветками, среди них не было ни одного белого. Мендель не раз повторял опыт, использовал другие признаки. Если он скрещивал горох с жёлтыми и зелёными семенами, у всех потомков семена были жёлтыми. Если он скрещивал горох с гладкими и морщинистыми семенами, у потомства были гладкие семена. Потомство от высоких и низких растений было высоким. Итак, гибриды первого поколения всегда единообразны по данному признаку и приобретают признак одного из родителей. Этот признак (более сильный, доминантный ), всегда подавлял другой (рецессивный) .

Кодоминирование и неполное доминирование

Некоторые противоположные признаки находятся не в отношении полного доминирования (когда один всегда подавляет другой у гетерозиготных особей), а в отношении неполного доминирования . Например, при скрещивании чистых линий львиного зева с пурпурными и белыми цветками особи первого поколения имеют розовые цветки. При скрещивании чистых линий андалузских кур чёрной и белой окраски в первом поколении рождаются куры серой окраски. При неполном доминировании гетерозиготы имеют признаки, промежуточные между признаками рецессивной и доминантной гомозигот .

Явление, при котором скрещивание гетерозиготных особей приводит к образованию потомства, часть которого несёт доминантный признак, а часть - рецессивный, называется расщеплением. Следовательно, расщепление - это распределение доминантных и рецессивных признаков среди потомства в определённом числовом соотношении. Рецессивный признак у гибридов первого поколения не исчезает, а только подавляется и проявляется во втором гибридном поколении.

Объяснение

Закон чистоты гамет : в каждую гамету попадает только одна аллель из пары аллелей данного гена родительской особи.

В норме гамета всегда чиста от второго гена аллельной пары. Этот факт, который во времена Менделя не мог быть твердо установлен, называют также гипотезой чистоты гамет. В дальнейшем эта гипотеза была подтверждена цитологическими наблюдениями. Из всех закономерностей наследования, установленных Менделем, данный «Закон» носит наиболее общий характер (выполняется при наиболее широком круге условий).

Закон независимого наследования признаков

Иллюстрация независимого наследования признаков

Определение

Закон независимого наследования (третий закон Менделя) - при скрещивании двух гомозиготных особей, отличающихся друг от друга по двум (и более) парам альтернативных признаков, гены и соответствующие им признаки наследуются независимо друг от друга и комбинируются во всех возможных сочетаниях (как и при моногибридном скрещивании). Когда скрещивались растения, отличающиеся по нескольким признакам, таким как белые и пурпурные цветы и желтые или зелёные горошины, наследование каждого из признаков следовало первым двум законам и в потомстве они комбинировались таким образом, как будто их наследование происходило независимо друг от друга. Первое поколение после скрещивания обладало доминантным фенотипом по всем признакам. Во втором поколении наблюдалось расщепление фенотипов по формуле 9:3:3:1, то есть 9:16 были с пурпурными цветами и желтыми горошинами, 3:16 с белыми цветами и желтыми горошинами, 3:16 с пурпурными цветами и зелёными горошинами, 1:16 с белыми цветами и зелёными горошинами.

Объяснение

Менделю попались признаки, гены которых находились в разных парах гомологичных хромосом гороха. При мейозе гомологичные хромосомы разных пар комбинируются в гаметах случайным образом. Если в гамету попала отцовская хромосома первой пары, то с равной вероятностью в эту гамету может попасть как отцовская, так и материнская хромосома второй пары. Поэтому признаки, гены которых находятся в разных парах гомологичных хромосом, комбинируются независимо друг от друга. (Впоследствии выяснилось, что из исследованных Менделем семи пар признаков у гороха, у которого диплоидное число хромосом 2n=14, гены, отвечающие за одну из пар признаков, находились в одной и той же хромосоме. Однако Мендель не обнаружил нарушения закона независимого наследования, так как сцепления между этими генами не наблюдалось из-за большого расстояния между ними).

Основные положения теории наследственности Менделя

В современной интерпретации эти положения следующие:

  • За наследственные признаки отвечают дискретные (отдельные, не смешивающиеся) наследственные факторы - гены (термин «ген» предложен в 1909 г. В.Иоганнсеном)
  • Каждый диплоидный организм содержит пару аллелей данного гена, отвечающих за данный признак; один из них получен от отца, другой - от матери.
  • Наследственные факторы передаются потомкам через половые клетки. При формировании гамет в каждую из них попадает только по одному аллелю из каждой пары (гаметы «чисты» в том смысле, что не содержат второго аллеля).

Условия выполнения законов Менделя

В соответствии с законами Менделя наследуются только моногенные признаки. Если за фенотипический признак отвечает более одного гена (а таких признаков абсолютное большинство), он имеет более сложный характер наследования.

Условия выполнения закона расщепления при моногибридном скрещивании

Расщепление 3: 1 по фенотипу и 1: 2: 1 по генотипу выполняется приближенно и лишь при следующих условиях.

Грегор Мендель – основоположник генетики! Краткая История жизни.


22 июля 1822 года – в небольшой деревушке на территории современной Чехии родился ученый Г. Мендель, который при крещении был назван Иоганном.

В 1843 году Мендель был принят в августинский монастырь святого Томаша и выбрал орденское имя Грегориус.

В 1854 году Менделю был выдан участок земли (35х7 м), на котором он весной впервые посеял горох.

В 1865 году Мендель изложил результаты своих опытов в работе «Опыты над растительными гибридами» и доложил о ней на заседании Брюннского общества естественных наук.

Весной 1868 года Мендель был избран новым аббатом августинского монастыря святого Томаша.

В январе 1884 года вследствие тяжелой болезни сердца и почек основатель генетики Иоганн Грегор Мендель умер.

Горох посевной – как объект генетики.

Первые свои опыты Мендель проводил на таком растении, как Горох посевной. Почему именно этот объект он выбрал? Ниже приведены признаки, по которым можно считать, что выбранный объект был удачным:

- Удобство в культивировании гороха;

- Самоопыление;

- Четко выраженные признаки;

- Крупные цветки, хорошо переносящие кострирование и защищенные от чужой пыльцы;

- Плодовитые гибриды.

Мендель выделил 7 пар альтернативных признаков:

    • Форма семян,

    Окраска кожуры семян,

    Форма бобов,

  • Окраска незрелого боба,
  • Расположение цветка,
  • Длина стебля.

Гибридологический метод Менделя. Законы Менделя при моногибридном скрещивании.

Гибридологический метод – это система скрещиваний, позволяющая проследить закономерности наследования и изменения признаков в ряду поколений.

Предпосылки создания метода.

Предпосылки Отличительные особенности опытов Менделя
  • Клеточная теория (1838-1839 гг) Т. Шванн, М. Шлейден
  • Теория естественного отбора (Ч. Дарвин),
  • Элементы математической статистики и теория вероятности.
  • Изучал наследование отдельных альтернативных (взаимоисключающих) признаков, тогда как его предшественники изучали наследственность, как единое целое.
  • Допускал к скрещиванию родительских особей, являющихся чистыми линиями (ГМЗ) с постоянным значением исследуемых альтернативных признаков. Чистоту линий неоднократно проверял в ходе анализирующего скрещивания.
  • Для исследований выбрал горох посевной, имеющий несколько пар альтернативных признаков, для которых установленные Менделем закономерности имели наиболее простой вид.
  • Вел строгий количественный учет гибридов растений от каждой родительской пары и по каждой паре контрастных альтернативных признаков, что дало возможность выявить статистические закономерности.

Моногибридное скрещивание – это скрещивание особей, отличающихся по одной паре контрастных альтернативных признаков.

I закон Менделя (закон единообразия гибридов первого поколения, закон доминирования):

При скрещивании двух родительских особей, относящихся к разным чистым линиям (ГМЗ) и отличающихся по одной паре контрастных альтернативных признаков, все гибриды первого поколения будут единообразны как по генотипу, так и по фенотипу.

Следствия:

1. Доминирование – это явление преобладания признаков одного из родителя у гибридов первого поколения. Признак, проявляющийся у гибридов первого поколения называется, доминантным, а подавляемый – рецессивным.

2. Если при скрещивании двух родительских особей с противоположными признаками в фенотипе, в их потомстве все гибриды одинаковы или единообразны, то исходные родительские особи были ГМЗ.

3. Гипотеза чистоты гамет:

Гаметы чисты, т. к. несут только 1 ген (наследственный фактор) из пары. Гибриды получают оба наследственных фактора – один от матери, второй – от отца.

II закон Менделя (закон расщепления признаков):

Рецессивный признак не исчезает бесследно, а находится в подавленном состоянии у гибридов первого поколения и проявляется у гибридов второго поколения в соотношении 3:1.

Следствия:

1. Расщепление признаков – это явление появления в потомстве разных фено- и генотипических классов.

2. Если при скрещивании двух родительских особейс одинаковыми признаками в фенотипе, в потомстве произошло расщепление в соотношении 3:1, то исходные особи были ГТЗ.

Цитологический механизм:

1. Соматические клетки диплоидны и содержат парные аллельные гены, отвечающие за развитие каждой пары контрастных признаков.

2. в результате мейоза в гаметы попадает 1 ген из каждой пары, т.к. гаметы гаплоидны.

3. при оплодотворении происходит слияние гамет и восстановление диплоидного набора хромосом (восстанавливается парность генов)

Анализирующее скрещивание.

Это скрещивание, проводимое с целью установления генотипа исследуемой особи с доминантными признаками в фенотипе.

Для этого исследуемую особь скрещивают с рецессивной ГМЗ и по потомству судят о генотипе исследуемой особи:


ВЗАИМОДЕЙСТВИЕ АЛЛЕЛЬНЫХ ГЕНОВ:

Полное доминирование,

Неполное доминирование,

Сверхдоминирование,

Кодоминирование,

Множественный аллелизм.

Взаимодействие генов – явление, когда за развитие признака отвечает несколько генов (аллелей).

          • Если взаимодействуют гены одной аллельной пары, такое взаимодействие называется аллельным, а если разных аллельных пар – неаллельным.
  • ПОЛНОЕ ДОМИНИРОВАНИЕ – такое взаимодействие, при котором 1 ген полностью подавляет (исключает) действие другого признака.

Механизм:

1. Доминантный аллель в ГТЗ состоянии обеспечивает синтез продуктов достаточный для проявления признака такого же качества и интенсивности, как и в состоянии доминантной ГМЗ у родительской формы.

2. Рецессивный аллель либо совсем неактивен, либо продукты его активности не взаимодействуют с продуктами активности доминантного аллеля.

  • НЕПОЛНОЕ ДОМИНИРОВАНИЕ - промежуточный характер наследования. Это такой тип взаимодействия аллельных генов, при котором доминантный ген не полностью подавляет действие рецессивного гена, в следствие чего гибриды первого поколения (ГТЗ) имеют промежуточныймежду родительскими формами фенотипический вариант.

При этом во втором поколении расщепление по генотипу и фенотипу совпадает и равно 1:2:1.

Механизм:

1. Рецессивный аллель не активен.

2. Степень активности доминантного аллеля достаточна, чтобы обеспечить уровень проявления признака, как у доминантной ГМЗ.

  • КОДОМИНИРОВАНИЕ - это явление, при котором оба гена находят свое проявление в фенотипе потомства, при этом ни один из них не подавляет действие другого гена. Кодоминантные гены являются равнозначными. (Например, чалая окраска крупного рогатого скота формируется при одновременном присутствии в генотипе генов рыжей и белой масти. ; группа крови у человека). При кодоминировании 1:2:1.
  • СВЕРХДОМИНИРОВАНИЕ – это такой тип взаимодействия аллельных генов, когда доминантный ген в ГТЗ состоянии демонстрирует более яркое проявление признака, чем этот же ген в ГМЗ состоянии.
  • МНОЖЕСТВЕННЫЙ АЛЛЕЛИЗМ – это внутриаллельное взаимодействие генов, при котором за развитие одного признака отвечает не одна аллель, а несколько, при этом кроме основных доминантного и рецессивного аллеля появляются промежуточные, которые по отношению к дом. ведут себя как рецесивные, а по отношению к рецессивным, как доминантные.

(например, у сиамских кошек, у кроликов:С – дикий тип, С/ - сиамские, С// - альбинос; группы крови у человека)

Множественными называют аллели, которые представлены в популяции более, чем двумя аллельными состояниями, возникающими в результате многократного мутирования одного и того же локуса хромосомы.

Законы Менделя при дигибридном скрещивании.

Дигибридное скрещивание – это скрещивание особей, отличающихся по двум парам контрастных альтернативных признаков.

Комбинативная изменчивость – это появление новых комбинаций генов и признаков в результате скрещивания. Причины:

Коньюгация и кроссинговер, случайные расхождения хромосом и хроматид в анафазы мейоза, случайное слияние гамет при оплодотворении.

III закон Менделя (закон свободного независимого комбинирования признаков):

Отдельные пары признаков при дигибридном скрещивании ведут себя независимо, свободно сочетаясь друг с другом во всех возможных комбинациях.


ВЗАИМОДЕЙСТВИЕ НЕАЛЛЕЛЬНЫХ ГЕНОВ:

Неаллельное взаимодействие – это взаимодействие генов разных аллельных пар.

КОМПЛЕМЕНТАРНОСТЬ – это такой тип взаимодействия неаллельных генов, при котором они взаимно дополняют друг друга и при совместном нахождении в генотипе (А-В-) обуславливают развитие качественно нового признака по сравнению с действием каждого гена в отдельности (А-вв, ааВ-).

Комплементарные гены – это взаимодополняющие гены.

ЭПИСТАЗ -это тип взаимодействия неаллельных генов, при котором один неаллельный ген подавляет действие другого неаллельного гена.

Ген, который подавляет называется эпистатическим, геном-супрессором или ингибитором.

Ген, подавляемый, называется гипостатическим.

ПОЛИМЕРИЯ – это обусловленность развития определенного, обычно количественного признака, несколькими эквивалентными полимерными генами.

ПОЛИМЕРИЯ:

Некумулятивная

Когда неважно количество доминантных генов в генотипе, а важно их присутствие)

Кумулятивная (суммирующая)

Когда число доминантных аллелей влияет на степень выраженности данного признака, и чем больше доминантных аллелей, тем ярче выражен признак

Например, окраска кожи у человека, рост, масса тела, величина артериального давления.

Доминантные гены, одинаково влияющие на развитие одного признака, называются генами с однозначными действиями (А1, А2, А3..), а признаки называются полимерными.

Пороговый эффект- это минимальное количество полимерных генов, при которых проявляется признак.

СЦЕПЛЕННОЕ НАСЛЕДОВАНИЕ ГЕНОВ.

Группа сцепления – это совокупность генов, локализованных в одной хромосоме и наследующихся, как правило, совместно.

Полное сцепление – это явление, при котором группа сцепления не нарушается кроссинговером и гены, локализованные в одной хромосоме передаются совместно.

У потомства проявляются только родительские признаки.

Неполное сцепление – это явление, при котором группа сцепления нарушается кроссинговером. Гены, локализованные в одной хромосоме не всегда будут передаваться вместе. И в потомстве появляются новые сочетания признаков, наряду с известными родительскими.

Введение.

Генетика – наука, изучающая закономерности наследственности и изменчивости живых организмов.

Человеком давно отмечены три явления, относящиеся к наследственности: во-первых, сходство признаков потомков и родителей; во-вторых, отличия некоторых (иногда многих) признаков потомков от соответствующих родительских признаков; в-третьих, возникновение в потомстве признаков, которые были лишь у далеких предков. Преемственность признаков между поколениями обеспечивается процессом оплодотворения. С незапамятных времен человек стихийно использовал свойства наследственности в практических целях – для выведения сортов культурных растений и пород домашних животных.

Первые идеи о механизме наследственности высказали еще древнегреческие ученые Демокрит, Гиппократ, Платон, Аристотель. Автор первой научной теории эволюции Ж.-Б. Ламарк воспользовался идеями древнегреческих ученых для объяснения постулированного им на рубеже XVIII-XIX вв. принципа передачи приобретенных в течение жизни индивидуума новых признаков потомству. Ч. Дарвин выдвинул теорию пангенезиса, объяснявшую наследование приобретенных признаков

Чарльз Дарвин определял наследственность как свойство всех живых организмов передавать свои признаки и свойства из поколения в поколение, а изменчивость как свойство всех живых организмов приобретать в процессе индивидуального развития новые признаки.

Наследование признаков осуществляется через размножение. При половом размножении новые поколения возникают в результате оплодотворения. Материальные основы наследственности заключены в половых клетках. При бесполом или вегетативном размножении новое поколение развивается или из одноклеточных спор, или из многоклеточных образований. И при этих формах размножения связь между поколениями осуществляется через клетки, в которых заключены материальные основы наследственности (элементарные единицы наследственности) – гены – представляют собой участки ДНК хромосом.

Совокупность генов, которую организм получает от родителей, составляет его генотип. Совокупность внешних и внутренних признаков – это фенотип. Фенотип развивается в результате взаимодействия генотипа и условий внешней среды. Так или иначе основой остаются признаки которые несут в себе гены.

Закономерности, по которым признаки передаются из поколения в поколение, первым открыл великий чешский ученый Грегор Мендель. Он открыл и сформулировал три закона наследования, которые легли в основу современной генетики.

Жизнь и научные исследования Грегора Иоганна Менделя.

Моравский монах и генетик растений. Иоганн Мендель родился 1822 году в местечке Хейнцендорф (ныне Гинчице в Чехии), где его отец владел небольшим крестьянским наделом. Грегор Мендель, по свидетельству знавших его, действительно был добрым и приятным человеком. После получения начального образования в местной деревенской школе и позже, по окончании коллегии пиаристов в Лейпнике он был в 1834 году принял в Троппаунскую императорско-королевскую гимназию в первый грамматический класс. Четырьмя годами спустя родители Иоганна в результате стечения многих, быстро следовавших друг за другом, несчастливых событий были полностью лишены возможности возмещать необходимые расходы, связанные с учебой, а их сын, будучи тогда лишь 16 лет от роду, вынужден был совершенно самостоятельно заботиться о собственном содержании. В 1843 году Мендель был принят в Августинский монастырь святого Томаша в Альтбрюнне, где и принял имя Грегор. В 1846 году Мендель слушал также лекции по хозяйствованию, садоводству и виноградарству в Философском институте в Брюнне. В 1848 году, завершив курс богословия, с глубоким почтением Мендель получил разрешение готовиться к экзаменам на степень доктора философии. Когда же в следующем году он укрепился в намерении экзаменоваться, то ему было вручено предписание занять место супплента императорско-королевской гимназии в Цнайме, чему он последовал с радостью.

В 1851 году настоятель монастыря направил Менделя учиться в венский университет, где он, среди прочего, изучал ботанику. После окончания университета Мендель преподавал естественные науки в местной школе. Благодаря этому шагу его материальное положение в корне изменилось. В столь необходимом для каждых занятий благотворном благополучии физического существования к нему, с глубоким почтением, вернулись и мужество и силы, и он в течение пробного года штудировал предписанные классические предметы с большим прилежанием и любовью. В свободные часы занимался он маленьким ботанико-минералогическим собранием, предоставленным в монастыре в его распоряжение. Его пристрастие к области естествознания становилось тем большим, чем большие возможности получал он отдаваться ему. Хотя упомянутый в этих занятиях был лишен какого-либо руководства, а путь автодидакта здесь, как ни в какой иной науке, труден и ведет к цели медленно, все же за оное время Мендель приобрел такую любовь к изучению природы, что он не жалел уже сил для заполнения изменившихся у него пробелов путем самообучения и следуя советам людей, обладавших практическим опытом. 3 апреля 1851 года «учительский корпус» училища принял решение пригласить для временного замещения профессорской должности каноника монастыря святого Томаша господина Грегора Менделя. Помологические успехи Грегора Менделя дали ему право на звездный титул и на временное исполнение должности супплента по естественной истории в приготовительном классе Технического училища. В первом семестре учебы он занимался только десять часов в неделю и только у Доплера. Во втором семестре он занимался в неделю уже по двадцать часов. Из них десять – физикой у Доплера, пять в неделю – зоологией у Рудольфа Кнера. Одиннадцать часов в неделю – ботаникой у профессора Фенцля: кроме лекций по морфологии и систематике, он проходил еще специальный практикум по описанию и определению растений. В третьем семестре он записался уже на тридцать два часа занятий в неделю: десять часов – физика у Доплера, десять – химия у Роттенбахера: всеобщая химия, медицинская химия, фармакологическая химия и практикум по аналитической химии. Пять – на зоологию у Кнера. Шесть часов занятий у Унгера, одного из первых цитологов в мире. В его лабораториях он изучал анатомию и физиологию растений и проходил практикум по технике микроскопии. И еще - раз в неделю на кафедре математики – практикум по логарифмированию и тригонометрии.

1850 год, жизнь складывалась неплохо. Мендель уже мог сам себя содержать, и пользовался у коллег большим уважением, ибо хорошо справляться со своими обязанностями, и был очень приятен в общении. Его любили ученики.

В 1851 году Грегор Мендель замахнулся на кардинальный вопрос биологии – на проблему изменчивости и наследственности. Именно тогда он начал проводить опыты по направленному культивированию растений. Мендель доставлял различные растения из дальних и ближних окрестностей Брюнна. Культивировал растения по группам в специально отведенной для каждой из них части монастырского сада при различных внешних условиях. Он занимался кропотливыми метеонаблюдениями. Больше всего экспериментов и наблюдений Грегор проводил с горохом, который, начиная с 1854-го, из года в год каждую весну высевал в маленьком садике под окнами прелатуры. На горохе оказалось не сложно ставить четкий гибридизационный опыт. Для этого нужно лишь вскрыть пинцетом крупный, хоть еще и не дозревший цветок, оборвать пыльники, и самостоятельно предопределять ему «пару» для скрещивания. Поскольку самоопыление исключено, сорта гороха представляют собою, как правило, «чистые линии» с неизменяющимися от поколения к поколению константными признаками, которые очерчены крайне четко. Мендель выделил признаки, определявшие межсортовые различия: окраску кожуры зрелых зерен и – отдельно – зерен незрелых, форму зрелых горошин, цвет «белка» (эндоспермы), длину оси стебля, расположение и окраску бутонов. Тридцать с лишним сортов использовал он в эксперименте, и каждый из сортов предварительно был подвергнут двухлетнему испытанию на «константность» , на «постоянство признаков» , на «чистоту кровей» – в 1854-м и в 1855-м. Восемь лет шли эксперименты с горохом. Сотни раз за восемь цветений своими руками он аккуратно обрывал пыльники и, набрав на пинцет пыльцу с тычинок цветка другого сорта, наносил ее на рыльце пестика. На десять тысяч растений, полученных в итоге скрещиваний и от самоопылившихся гибридов, было заведено десять тысяч паспортов. Записи в них аккуратны: когда родительское растение выращено, какие цветы у него были, чьей пыльцой произведено оплодотворение, какие горошины – желтые или зеленые, гладкие или морщинистые – получены, какие цветы – окраска по краям, окраска в центре – распустились, когда получены семена, сколько из них желтых, сколько зеленых, круглых, морщинистых, сколько из них отобрано для посадки, когда они высажены и так далее.

Результатом его исследований стал доклад «Опыты над растительными гибридами», который был прочитан брюннским естествоиспытателем в 1865-м. В докладе сказано: «Поводом для постановки опытов, которым посвящена настоящая статья, послужило искусственное скрещивание декоративных растений, производившееся с целью получения новых, различающихся по окраске форм. Для постановки дальнейших опытов с целью проследить развитие помесей в их потомстве дала толчок бросающаяся в глаза закономерность, с которой гибридные формы постоянно возвращались к своим родоначальным формам». Как это нередко случается в истории науки, работа Менделя, не сразу получила должное признание у современников. Итоги его опытов были обнародованы на заседании Общества естественных наук города Брюнна, а затем опубликованы в журнале этого Общества, но идеи Менделя в то время не нашли поддержки. Номер журнала с описанием революционной работы Менделя в течение тридцати лет пылился в библиотеках. Лишь в конце XIX века ученые, занимавшиеся проблемами наследственности, открыли для себя труды Менделя, и он смог получить (уже посмертно) заслуженное признание.

Установленные Г. Менделем закономерности распределения в потомстве наследственных признаков. Закономерности были установлены Г. Менделем на основе многолетних (1856-1863) опытов по скрещиванию сортов гороха, различающихся по некоторым контрастным признакам. Открытие Г. Менделя не получило признания при его жизни. В 1900 г. эти закономерности были открыты вновь тремя независимыми исследователями (К. Корренсом, Э. Чермаком и Х. Де Фризом). Во многих руководствах по генетике упоминаются три закона Менделя:

1. Закон единообразия гибридов первого поколения - потомство первого поколения от скрещивания устойчивых форм, различающихся по одному признаку, имеет одинаковый фенотип.

2. Закон расщепления гласит - при скрещивании гибридов первого поколения между собой среди гибридов второго поколения в определенном соотношении появляются особи с фенотипом исходных родительских форм и гибридов первого поколения. В случае полного доминирования 3/4 особей обладают доминантным признаком и 1/4 - рецессивным.

3. Закон независимого комбинирования - каждая пара альтернативных признаков ведет себя в ряду поколений независимо друг от друга.

Первый закон Менделя.

Закон единообразия первого поколения гибридов.

Для иллюстрации первого закона Менделя - закона единообразия первого поколения - воспроизведем его опыты по монтлгибридному скрещиванию растений гороха. Скрещивание двух организмов называется гибридизацией, потомство от скрещивания двух особей с разной наследственностью называют гибридным, а отдельную особь - гибридом, подчеркивает сайт. Моногибридным называется скрещивание двух организмов, отличающихся друг от друга по одной паре альтернативных (взаимоисключающих) признаков. Следовательно, при таком скрещивании прослеживаются закономерности наследования только двух признаков, развитие которых обусловлено парой аллельных генов. Все остальные признаки, свойственные данным организмам, во внимание не принимаются.

Если скрестить растения гороха с желтыми и зелеными семенами, то у всех полученных в результате этого скрещивания гибридов семена будут желтыми. Такая же картина наблюдается при скрещивании растений, обладающих гладкой и морщинистой формой семян; все потомство первого поколения будет иметь гладкую форму семян. Следовательно, у гибрида, первого поколения из каждой пары альтернативных признаков развивается только один. Второй признак как бы исчезает, не проявляется. Явление преобладания у гибрида признака одного из родителей Г. Мендель назвал доминированием. Признак, проявляющийся у гибрида первого поколения и подавляющий развитие другого признака, был назван доминантным, а противоположный, т, е. подавляемый, признак - рецессивным. Если в генотипе организма (зиготы) два одинаковых аллельных гена - оба доминантные или оба рецессивные (АА или аа), такой организм называется гомозиготным. Если же из пары аллельных генов один доминантный, а другой рецессивный (Аа), то такой организм носит название гетерозиготного.

Закон доминирования - первый закон Менделя - называют также законом единообразия гибридов первого поколения, так как у всех особей первого поколения проявляется один признак.

Неполное доминирование.

Доминантный ген в гетерозиготном состоянии не всегда полностью подавляет рецессивный ген. В ряде случаев гибрид FI не воспроизводит полностью ни одного из родительских признаков и признак носит промежуточный характер с большим или меньшим уклонением к доминантному или рецессивному состоянию. Но все особи этого поколения единообразны по данному признаку. Так, при скрещивании ночной красавицы с красной окраской цветков (АА) с растением, имеющим белые цветки (аа), в FI образуется промежуточная розовая окраска цветка (Аа). При неполном доминировании в потомстве гибридов (Fi) расщепление по генотипу и фенотипу совпадает (1:2:1).

Неполное доминирование - широко распространенное явление. Оно обнаружено при изучении наследования окраски цветка у львиного зева, окраски шерсти у крупного рогатого скота и овец, биохимических признаков у человека и т. д. Промежуточные признаки, возникающие вследствие неполного доминирования, нередко представляют эстетическую или материальную ценность для человека. Возникает вопрос: можно ли вывести путем отбора, например, сорт ночной красавицы с розовой окраской цветков? Очевидно, нет, потому что этот признак развивается только у гетерозигот и при скрещивании их между собой всегда происходит расщепление:

Множественный аллелизм. До сих пор разбирались примеры, в которых один и тот же ген был представлен двумя аллелями - доминантным (А] и рецессивным (а). Эти два состояния гена возникают в процессе мутирования. Однако мутация (замена или утрата части нуклеотидов в молекуле ДНК) может возникать в разных участках одного гена. Таким путем образуются несколько аллелей одного гена и соответственно несколько вариантов одного признака. Ген А может мутировать в состояние а, а^, аз, .... ада ген В в другом локу-се - в состояние bi, иг, Ьз, Ь*, ..., Ь„и т. д. Приведем несколько примеров. У мухи дрозофилы известна серия аллелей по гену окраски глаз, состоящая из 12 членов: красная, коралловая, вишневая, абрикосовая и т. д. до белой, определяемой рецессивным геном. У кроликов существует серия множественных аллелей по окраске шерсти: сплошная (шиншилла), гималайская (горностаевая), а также альбинизм. Гималайские кролики на фоне общей белой окраски шерсти имеют черные кончики ушей, лап, хвоста и морды. Альбиносы полностью лишены пигмента. Члены одной серии аллелей могут находиться в разных доминантно-рецессивных отношениях друг к другу. Так, ген сплошной окраски доминантен по отношению ко всем членам серии. Ген гималайской окраски доминантен по отношению к гену белой окраски, но рецессивен по отношению к гену шиншилловой окраски. Развитие всех этих трех типов окраски обусловлено тремя разными аллелями, локализованными в одном и том же локусе. У человека серией множественных аллелей представлен ген, определяющий группу крови. При этом гены, обусловливающие группы крови А и В, не являются доминантными по отношению друг к другу и оба доминантны по отношению к гену, определяющему группу крови О. Следует помнить, что в генотипе диплоидных организмов могут находиться только два гена из серии аллелей. Остальные аллели данного гена в разных сочетаниях входят в генотип других особей данного вида. Таким образом, множественный аллелизм характеризует разнообразие генофонда целого вида, т. е. является видовым, а не индивидуальным признаком.

Второй закон Менделя.

Расщепление признаков у гибридов второго поколения.

Из гибридных семян гороха Г. Мендель вырастил растения, которые путем самоопыления произвели семена второго поколения. Среди них оказались не только желтые семена, но и зеленые. Всего он получил 2001 зеленое и 6022 желтых семян. Причем? семян гибридов второго поколения имели желтую окраску и? - зеленую. Следовательно, отношение числа потомков второго поколения с доминантным признаком к числу потомков с рецессивным оказалось равным 3:1. Такое явление он назвал расщеплением признаков.

Сходные результаты во втором поколении дали многочисленные опыты по гибридологическому анализу других пар признаков. Основываясь на полученных результатах, Г. Мендель сформулировал свой второй закон – закон расщепления. В потомстве, полученном от скрещивания гибридов первого поколения наблюдается явление расщепления: четверть особей из гибридов второго поколения несет рецессивный признак, три четверти – доминантный.

Гомозиготные и гетерозиготные особи. Для того чтобы выяснить, как будет осуществляться наследование признаков при самоопылении в третьем поколении, Мендель вырастил гибриды второго поколения и проанализировал потомство, полученное от самоопыления. Он выяснил, что 1/3 растений второго поколения, выросших из желтых семян, при самоопылении производила только желтые семена. Растения, выросшие из зеленых семян, давали только зеленые семена. Оставшиеся 2/3 растений второго поколения, выросшие из желтых семян, давали желтые и зеленые семена в отношении 3:1. Таким образом, эти растения были подобны гибридам первого поколения.

Итак, Менделем впервые был установлен факт, свидетельствующих о том, что растения, сходные по внешнему виду, могут резко отличаться по наследственным свойствам. Особи, не дающие расщепления в следующем поколении, получили название гомозиготных (от греч. «гомо» - равный, «зигота» - оплодотворенная яйцеклетка). Особи, в потомстве у которых обнаруживается расщепление, назвали гетерозиготными (от греч. «гетеро» - разный).

Причина расщепления признаков у гибридов. Какова причина расщепления признаков расщепления в потомстве гибридов? Почему в первом, втором и последующих поколениях возникают особи, дающие в результате скрещивания потомство с доминантным и рецессивным признаками? Обратимся к схеме, на которой символами записаны результаты опыта по моногибридному скрещиванию. Символы P, F1, F2 и т.д. обозначают соответсвенно родительское, первое и второе поколения. Значок Х указывает скрещивание, символ > обозначает мужской пол (щит и копье Марса), а + - женский пол (зеркало Венеры).

Ген, отвечающий за доминантный желтый цвет семян, обозначим большой буквой, например А; ген, отвечающий за рецессивный зеленый цвет, - малой буквой а. Поскольку каждая хромосома представлена в соматических клетках двумя гомологами, каждый ген также присутствует в двух экземплярах, как говорят генетики, в виде двух аллей. Буква А обозначает доминантный аллель, а a – рецессивный.

Схема образования зигот при моногибридном скрещивании такова:

где Р – родители, F1 – гибриды первого поколения, F2 – гибриды второго поколения. Для дальнейших рассуждений необходимо вспомнить основные явления, происходящие в мейозе. В первом делении мейоза происходит образование клеток, несущих гаплоидный набор хромосом (n). Такие клетки содержат только одну хромосому из каждой пары гомологических хромосом, в дальнейшем из них образуются гаметы. Слияние гаплоидных гамет при оплодотворении ведет к образованию гаплоидной (2n) зиготы. Процесс образования гаплоидных гамет и восстановление диплоидности при оплодотворении обязательно происходит в каждом поколении организмов, размножающихся половым способом.

Исходные родительские растения в рассматриваемом опыте были гомозиготными. Следовательно, скрещивание можно записать так: Р (АА Х аа). Очевидно, что оба родителя способны производить гаметы только одного сорта, причем растения, имеющие два доминантных гена АА, дают только гаметы, несущие ген А, а растения с двумя рецессивными генами аа образуют половые клетки с геном а. В первом поколении F1 все потомство получается гетерозиготным Аа и имеет семена только желтого цвета, так как доминантный ген А подавляет действие рецессивного гена а. Такие гетерозиготные растения Аа способны производить гаметы двух сортов, несущие гены А и а.

При оплодотворении возникают четыре типа зигот – АА + Аа + аА + аа, что можно записать как АА + 2Аа +аа. Поскольку в нашем опыте гетерозиготные семена Аа также окрашены в желтый цвет, в F2 получается соотношение желтых семян к зеленым, равное 3:1. Понятно, что 1/3 растений которые выросли из желтых семян, имеющих гены АА, при самоопылении снова дает только желтые семена. У остальных 2/3 растений с генами Аа, так же, как у гибридных растений из F1, будут формироваться два разных типа гамет, и в следующем поколении при самоопылении произойдет расщепление признака окраски семян на желтые и зеленые в соотношении 3:1.

Таким образом было установлено, что расщепление признаков в потомстве гибридных растений – результат наличия у них двух генов – А и а, ответственных за развитие одного признака, например окраски семян.

Третий закон Менделя.

Закон независимого комбинирования, или третий закон Менделя.

Изучение Менделем наследования одной пары аллелей дало возможность установить ряд важных генетических закономерностей: явление доминирования, неизменность рецессивных аллелей у гибридов, расщепление потомства гибридов в отношении 3:1, а также предположить, что гаметы генетически чисты, т. е. содержат только один ген из аллельнои пары. Однако организмы различаются по многим генам. Установить закономерности наследования двух пар альтернативных признаков и более можно путем дигибридного или полигибридного скрещивания.

Для дигибрндного скрещивания Мендель взял гомозиготные растения гороха, отличающиеся по двум генам - окраски семян (желтые, зеленые) и формы семян (гладкие, морщинистые). Доминантные признаки - желтая окраска (А) и гладкая форма (В) семян. Каждое растение образует один сорт гамет по изучаемым аллелям:

При слиянии гамет все потомство будет единообразным: В случаи образовании гамет у гибрида из каждой пары аллельных генов в гамету попадает только один, при этом вследствие случайности расхождения отцовских и материнских хромосом в I делении мейоза ген А может попасть в одну гамету с геном В или с геном Ь. Точно так же ген а может оказаться в одной гамете с геном В или с геном Ь. Поэтому у гибрида образуются четыре типа гамет: АВ, Ав, аВ, оа.

Во время оплодотворения каждая из четырех типов гамет одного организма случайно встречается с любой из гамет другого организма. Все возможные сочетания мужских и женских гамет можно легко установить с помощью решетки Пеннета, в которой по горизонтали выписываются гаметы одного родителя, по вертикали - гаметы другого родителя. В квадратики вносятся генотипы зигот, образующиеся при слиянии гамет.

Легко подсчитать, что по фенотипу потомство делится на 4 группы: 9 желтых гладких, 3 желтых морщинистых, 3 зеленых гладких, 1 желтая морщинистая. Если учитывать результаты расщепления по каждой паре признаков в отдельности, то получится, что отношение числа желтых семян к числу зеленых и отношение гладких семян к морщинистым для каждой пары равно 3:1. Таким образом, при дигибридном скрещивании каждая пара признаков при расщеплении в потомстве ведет себя так же, как при моногибридном скрещивании, т. е. независимо от другой пары признаков.

При оплодотворении гаметы соединяются по правилам случайных сочетаний, но с равной вероятностью для каждой. В образующихся зиготах возникают различные комбинации генов. Независимое распределение генов в потомстве и возникновение различных комбинаций этих генов при дигибридном скрещивании возможно лишь в том случае, если пары аллельных генов расположены в разных парах гомологических хромосом.

Таким образом третий закон Менделя гласит: При скрещивании двух гомозиготных особей, отличающихся друг от друга по двум и более парам альтернативных признаков, гены и соответствующие им признаки наследуются независимо друг от друга и комбинируются во всех возможных сочетаниях.

I закон Менделя. Закон единообразия гибридов первого поколения

При скрещивании гомозиготных особей, отличающихся по одной паре альтернативных (взаимоисключающих) признаков, все потомство в первом поколении единообразно как по фенотипу, так и по генотипу.

Скрещивали растения гороха с желтыми (доминантный признак) и зелеными (рецессивный признак) семенами. Образование гамет сопровождается мейозом. Каждое растение образует один сорт гамет. Из каждой гомологичной пары хромосом в гаметы отходят по одной хромосоме с одним из аллельных генов (А или а). После оплодотворения парность гомологичных хромосом восстанавливается, образуются гибриды. Все растения будут иметь семена только желтого цвета (фенотип), гетерозиготны по генотипу Аа. Это происходит при полном доминировании.

Гибрид Аа имеет один ген А от одного родителя, а второй ген - а - от другого родителя (рис. 73).

Гаплоидные гаметы (G), в отличие от диплоидных организмов, обводят кружочком.

В результате скрещивания получаются гибриды первого поколения, обозначаемые F 1 .

Для записи скрещиваний применяют специальную таблицу, предложенную английским генетиком Пеннетом и называемую решеткой Пеннета.

По горизонтали выписывают гаметы отцовской особи, по вертикали - материнской. В местах пересечений записывают геноти-

Рис. 73. Наследование при моногибридном скрещивании.

I - скрещивание двух сортов гороха с желтыми и зелеными семенами (Р); II

Цитологические основы I и II законов Менделя.

F 1 - гетерозиготы (Аа), F 2 - расщепление по генотипу 1 АА: 2 Аа: 1 аа.

пы потомков. В таблице число клеток зависит от числа типов гамет, образуемых скрещиваемыми особями.

II закон Менделя. Закон расщепления гибридов первого поколения

При скрещивании гибридов первого поколения между собой во втором поколении появляются особи как с доминантными, так и с рецессивными признаками и происходит расщепление по фенотипу в соотношении 3:1 (три доминантных фенотипа и один рецессивный) и 1:2:1 по генотипу (см. рис. 73). Такое расщепление возможно при полном доминировании.

Гипотеза «чистоты» гамет

Закон расщепления можно объяснить гипотезой «чистоты» гамет.

Явление несмешивания аллелей альтернативных признаков в гаметах гетерозиготного организма (гибрида) Мендель назвал ги- потезой «чистоты» гамет. За каждый признак отвечают два аллельных гена (Аа). При образовании гибридов аллельные гены не смешиваются, а остаются в неизмененном виде.

Гибриды Аа в результате мейоза образуют два типа гамет. В каждую гамету идет одна из пары гомологичных хромосом с ал- лельным геном А или аллельным геном а. Гаметы чисты от другого аллельного гена. При оплодотворении восстанавливается гомологичность хромосом и аллельность генов, проявляется рецессивный признак (зеленый цвет горошин), ген которого в гибридном организме не проявлял своего действия. Признаки развиваются в результате взаимодействия генов.

Неполное доминирование

При неполном доминировании гетерозиготные особи имеют собственный фенотип, и признак носит промежуточный характер.

При скрещивании растений ночной красавицы с красными и белыми цветками в первом поколении появляются особи с розовой окраской. При скрещивании гибридов первого поколения (розовые цветки) расщепление в потомстве по генотипу и фенотипу совпадает (рис. 74).


Рис. 74. Наследование при неполном доминировании у растения ночной красавицы.

Свойством неполного доминирования обладает ген, вызывающий серповидноклеточную анемию у человека.

Анализирующее скрещивание

Рецессивный признак (зеленый горох) проявляется только в гомозиготном состоянии. Гомозиготные (желтый горох) и гетерозиготные (желтый горох) особи с доминантными признаками по фенотипу не отличаются друг от друга, но имеют разные генотипы. Их генотипы можно установить, скрестив с особями с известным генотипом. Такой особью может быть зеленый горох, имеющий гомозиготный рецессивный признак. Это скрещивание называют анализирующимися. Если в результате скрещивания все потомство будет единообразным, то исследуемая особь гомозиготна.

Если произойдет расщепление, то особь гетерозиготна. Потомство гетерозиготной особи дает расщепление в соотноше- нии 1:1.

III закон Менделя. Закон независимого комбинирования признаков (рис. 75). Организмы отличаются друг от друга по нескольким признакам.

Скрещивание особей, отличающихся по двум признакам, называют дигибридным, а по многим - полигибридным.

При скрещивании гомозиготных особей, отличающихся по двум парам альтернативных признаков, во втором поколении происходит независимое комбинирование признаков.

В результате дигибридного скрещивания все первое поколение единообразно. Во втором поколении происходит расщепление по фенотипу в соотношении 9:3:3:1.

Например, если скрестить горох с желтыми семенами и гладкой поверхностью (доминантный признак) с горохом с зелеными семенами и морщинистой поверхностью (рецессивный признак), то все первое поколение будет единообразным (желтые и гладкие семена).

При скрещивании гибридов между собой во втором поколении появились особи с признаками, которых не было у исходных форм (желтые морщинистые и зеленые гладкие семена). Эти признаки наследуются независимо друг от друга.

Дигетерозиготная особь образовывала 4 типа гамет

Для удобства подсчета особей, получившихся во втором поколении после скрещивания гибридов, пользуются решеткой Пеннета.

Рис. 75. Независимое распределение признаков при дигибридном скрещивании. А, В, а, b - доминантные и рецессивные аллели, контролирующие развитие двух признаков. G - половые клетки родителей; F 1 - гибриды первого поколения; F 2 - гибриды второго поколения.

В результате мейоза в каждую гамету отойдет по одному из аллельных генов из гомологичной пары хромосом.

Образуется 4 типа гамет. Расщепление после скрещивания в соотношении 9:3:3:1 (9 особей с двумя доминантными признаками, 1 особь с двумя рецессивными признаками, 3 особи с одним доминантным, а другим рецессивным признаками, 3 особи с доминантным и рецессивным признаками).

Появление особей с доминантными и рецессивными признаками возможно потому, что гены, отвечающие за цвет и форму горошин, находятся в различных негомологичных хромосомах.

Каждая пара аллельных генов распределяется независимо от другой пары, и поэтому гены могут комбинироваться независимо.

Гетерозиготная особь по «n» парам признаков образует 2 n типов гамет.

Вопросы для самоконтроля

1. Как формулируется I закон Менделя?

2. Горох с какими семенами скрещивал Мендель?

3. Растения с какими семенами получились в результате скрещивания?

4. Как формулируется II закон Менделя?

5. Растения с какими признаками получились в результате скрещивания гибридов первого поколения?

6. В каком числовом соотношении происходит расщепление?

7. Как можно объяснить закон расщепления?

8. Как объяснить гипотезу «чистоты» гамет?

9. Как объяснить неполное доминирование признаков? 10.Какое расщепление по фенотипу и генотипу происходит

после скрещивания гибридов первого поколения?

11.Когда производят анализирующее скрещивание?

12. Как производят анализирующее скрещивание?

13.Какое скрещивание называют дигибридным?

14. В каких хромосомах находятся гены, отвечающие за цвет и форму горошин?

15. Как формулируется III закон Менделя?

16. Какое расщепление по фенотипу происходит в первом поколении?

17. Какое расщепление происходит по фенотипу во втором поколении?

18.Что используют для удобства подсчета особей, получившихся после скрещивания гибридов?

19.Как можно объяснить появление особей с признаками, которых не было раньше?

Ключевые слова темы «Законы Менделя»

аллельность анемия

взаимодействие

гаметы

ген

генотип

гетерозигота

гибрид

гипотеза «чистоты» гамет

гомозигота

гомологичность

горох

горошина

действие

дигибрид

доминирование

единообразие

закон

мейоз

образование окраска

оплодотворение

особь

парность

поверхность

подсчет

поколение

полигибрид

потомство

появление

признак

растение

расщепление

решетка Пеннета

родители

свойство

семена

скрещивание

слияние

соотношение

сорт

удобство

фенотип

форма

характер

цвет

цветы

Множественный аллелизм

К числу аллельных генов могут относиться не два, а большее число генов. Это множественные аллели. Они возникают вслед- ствие мутации (замены или утраты нуклеотида в молекуле ДНК). Примером множественных аллелей могут быть гены, отвечающие за группы крови у человека: I A , I B , I 0 . Гены I A и I B доминантны по отношению к гену I 0 . В генотипе всегда присутствуют только два гена из серии аллелей. Гены I 0 I 0 определяют I группу крови, гены I A I A , I A I O - II группу, I B I B , I B I 0 - III группу, I A I B - IV группу.

Взаимодействие генов

Между геном и признаком существует сложная связь. Один ген может отвечать за развитие одного признака.

Гены отвечают за синтез белков, которые катализируют определенные биохимические реакции, в результате чего проявляются определенные признаки.

Один ген может отвечать за развитие нескольких признаков, проявляя плейотропное действие. Выраженность плейотропного действия гена зависит от биохимической реакции, которую ката- лизирует фермент, синтезируемый под контролем данного гена.

За развитие одного признака могут отвечать несколько генов - это полимерное действие гена.

Проявление признаков - результат взаимодействия различных биохимических реакций. Эти взаимодействия могут быть связаны с аллельными и неаллельными генами.

Взаимодействие аллельных генов.

Взаимодействие генов, находящихся в одной аллельной паре, происходит по типу:

. полного доминирования;

. неполного доминирования;

. кодоминирования;

. сверхдоминирования.

При полном доминировании действие одного (доминантного) гена полностью подавляет действие другого (рецессивного). При скрещивании в первом поколении проявляется доминантный признак (например желтый цвет горошин).

При неполном доминировании происходит ослабление действия доминантного аллеля в присутствии рецессивного. Гете- розиготные особи, полученные в результате скрещивания, имеют собственный генотип. Например, при скрещивании растений ночной красавицы с красными и белыми цветками появляются розовые.

При кодоминировании проявляется действие обоих генов при одновременном их присутствии. В результате проявляется новый признак.

Например, IV группа крови (I A I B) у человека формируется при взаимодействии генов I A и I B . По отдельности ген I A определяет II группу крови, а I B - III группу крови.

При сверхдоминировании у доминантного аллеля в гетерозиготном состоянии отмечается более сильное проявление признака, чем в гомозиготном.

Взаимодействие неаллельных генов

На один признак организма очень часто могут влиять несколько пар неаллельных генов.

Взаимодействие неаллельных генов происходит по типу:

. комплементарности;

. эпистаза;

. полимерии.

Комплементарное действие проявляется при одновременном присутствии в генотипе организмов двух доминантных неаллельных генов. Каждый из доминантных генов может проявляться самостоятельно, если другой находится в рецессивном состоянии, но их совместное присутствие в доминантном состоянии в зиготе обусловливает новое состояние признака.

Пример. Скрещивали два сорта душистого горошка с белыми цветками. Все гибриды первого поколения имели красные цветки. Окрас- ка цветков зависит от двух взаимодействующих генов А и В.

Белки (ферменты), синтезированные на основе генов А и В, катализируют биохимические реакции, которые приводят к прояв- лению признака (красная окраска цветков).

Эпистаз - взаимодействие, при котором один из доминантных или рецессивных неаллельных генов подавляет действие другого неаллельного гена. Ген, подавляющий действие другого, называют эпистатическим геном, или супрессором. Подавляемый ген называют гипостатическим. Эпистаз бывает доминантным и рецессивным.

Доминантный эпистаз. Примером доминантного эпистаза может быть наследование окраски оперения у кур. Доминантный ген С отвечает за окраску оперения. Доминантный неаллельный ген I подавляет развитие окраски оперения. В результате этого куры, имеющие ген С в генотипе, в присутствии гена I имеют белое оперение: IICC; IiCC; IiCc; Iicc. Куры с генотипом iicc также будут белыми, потому что эти гены находятся в рецессивном состоянии. Оперение кур с генотипом iiCC, iiCc будет окрашено. Белая окраска оперения обусловлена присутствием рецессивного аллеля гена i или наличием гена подавителя окраски I. В основе взаимодействия генов лежат биохимические связи между белками-ферментами, которые кодируются эпистатическими генами.

Рецессивный эпистаз. Рецессивным эпистазом объясняется бомбейский феномен - необычное наследование антигенов системы групп крови АВ0. Известны 4 группы крови.

В семье женщины с I группой крови (I 0 I 0) от мужчины со II группой крови (I A I A) родился ребенок с IV группой крови (I A I B), что невозможно. Оказалось, что женщина унаследовала от матери ген I B , от отца ген I 0 . Проявил действие только ген I 0 , поэтому

считалось, что женщина имеет I группу крови. Ген I B был подавлен рецессивным геном х, который находился в гомозиготном состоянии - хх.

У ребенка этой женщины подавленный ген I B проявил свое действие. Ребенок имел IV группу крови I A I B .

Полимерное действие генов связано с тем, что несколько неал- лельных генов могут отвечать за один и тот же признак, усиливая его проявление. Признаки, зависящие от полимерных генов, относят к количественным. Гены, отвечающие за развитие количественных признаков, дают суммарный эффект. Например, за пигментацию кожи у человека отвечают полимерные неаллельные гены S 1 и S 2 . В присутствии доминантных аллелей этих генов синтезируется много пигмента, в присутствии рецессивных - мало. Интенсивность окраски кожи зависит от количества пигмента, что определяется количеством доминантных генов.

От брака между мулатами S 1 s 1 S 2 s 2 рождаются дети с пигментацией кожи от светлой до темной, но вероятность рождения ребенка с белым и черным цветом кожи равна 1/16.

Многие признаки наследуются по принципу полимерии.

Вопросы для самоконтроля

1. Что такое множественные аллели?

2. Какие гены отвечают за группы крови у человека?

3. Какие группы крови есть у человека?

4. Какие связи существуют между геном и признаком?

5. Как взаимодействуют аллельные гены?

6. Как взаимодействуют неаллельные гены?

7. Как можно объяснить комплементарное действие гена?

8. Как можно объяснить эпистаз?

9. Как можно объяснить полимерное действие гена?

Ключевые слова темы «Множественные аллели и взаимодействие генов»

аллелизм аллель антигены брак

взаимодействие

генотип

гибрид

горох

горошек

группа крови

действие

дети

доминирование

женщина

замена

кодоминантность

кодоминирование

кожа

куры

мать

молекула

мулат

мутация

наличие

наследование

нуклеотиды

окраска

оперение

основа

отношение

пигмент

пигментация

плейотропия

подавитель

поколение

полимерия

признак

пример

присутствие

проявление

развитие

реакции

ребенок

результат

сверхдоминирование связь

синтез белка система

скрещивание

состояние

степень

утрата

феномен

ферменты

цвет

цветы

человек

Выбор редакции
Глаголам русского языка свойственна категория наклонения, которая служит для того, чтобы соотносить действие, выражаемое данной частью...

Законы Менделя Схема первого и второго закона Менделя. 1) Растение с белыми цветками (две копии рецессивного аллеля w) скрещивается с...

>>Русский язык 2 класс >>Русский язык: Разделительный мягкий знак (ь) Разделительный мягкий знак (ь) Роль и значение мягкого знака в...

Важной частью языкознания является орфоэпия - наука, изучающая произношение. Именно она отвечает на вопрос о том, ставить ударение в...
Разделы: Русский язык Тип урока: урок обобщения и систематизации. Вид урока: комбинированный (лекция с обратной связью,...
Корень - основа слова, несущая основную лексическую нагрузку. Он является самой устойчивой морфемой в языке: базовая лексика любого...
Только на первый взгляд кажется элементарной темой. На самом деле здесь есть множество своих нюансов, без знания которых писать грамотно...
В конце апреля астрономы в северном полушарии получат возможность наблюдать метеоритный дождь Лириды, который является пыльным следом ,...
Как вы думаете, если бы Луна была ближе к нашей планете, чем сейчас, как бы она выглядела? Но давайте обо всем по порядку. Ученые – люди...