Как космос поможет земле энергоресурсами. Космическая энергетика: Вот как это может работать. Гигантский луч энергии из космоса


Представление о существовании универсальной космической энергии, которую человек может использовать и с помощью которой реализуются сверхчувственные феномены, имеет глубокие корни в культурах всех народов. Самое известное представление, которое мы находим в индийской философии, это существование праны, которая понимается как космическая энергия, которая существует в пяти различных формах и поддерживает жизненные процессы как "ветер тела".

В священных текстах индусов и буддистов описывается такая же космическая праэнергия, обозначенная мистическим слогом "Ом" или "Аум" , оба слога должны вызывать в мозгу колебания, которые приводят различные чакры (нервные центры человека) в состояние, позволяющее принимать космическую (жизненную) энергию.

Библия описывает невидимую жизненную силу, которая поддерживает общее божественное начало, как "Святой дух"; "Или вы не знаете, что ваше тело является храмом святого духа, который в вас есть, который вы приняли от Бога и который вам самим не принадлежит?" (1. Кор.6.19). В японском учении акупунктуры мы находим "Ки", в китайском "Чи", обозначение жизненной энергии как реки, исток которой находится в точке выше пупка, и которая рассредотачивается по всему телу из легких через сети так называемых "меридианов" (нервные каналы). Вся материя рассматривается как проявление этой энергии на материальном уровне.

Райх, который завоевал всемирную славу как психоаналитик из Вены, в конце тридцатых годов говорил, что космическая энергия существует, она может впитываться человеческим организмом, накапливаться и выделяться им. Процесс приема, накапливания и выделения этой энергии, которую он называл Оргон-энергия, он выразил в формуле: напряжение - зарядка - разгрузка - расслабление.

Какую роль имеет эта биологическая пульсация в общем энергетическом хозяйстве живого организма, следующим образом описал один из ближайших сотрудников Райха, Ола Ракнес: "Пульсация регулирует энергетическое хозяйство организма так же, как удары сердца обеспечивают подачу крови в различные органы. Метаболизм энергии (- состояние изменения энергии) управляется автономной или вегетативной системой, которая влияет на пищеварение, обращение крови, дыхание, сексуальность и эмоции.

Одна из этих функций - дыхание - контролируется до определенной степени волей и централизованно - через центральную нервную систему. Поэтому через дыхательную систему мы можем проникнуть в свободную биологическую пульсацию организма. Важной предпосылкой здоровья является свободный метаболизм организма. Его можно узнать по беспрепятственной биологической пульсации, которая является критерием здоровья". (И мы в процессе нашего обучения сможем с помощью дыхательных упражнений управлять по желанию нашим энергетическим метаболизмом - и благодаря этому, например, сможем самостоятельно лечить психосоматические нарушения и заболевания!).

Вначале Райх смог энергию Оргон локализовать только как излучение, которое исходит от живого организма: только позже он обнаружил, что Оргон - как и "светоносный эфир", который ученые открыли раньше,- проявляется повсеместно. Поэтому постоянно происходит свободный обмен энергии. Ракнес называл для этого три предпосылки:

  1. Организм вбирает в себя необходимую энергию из питательных веществ, через дыхание и прямой приток Органа.
  2. Энергия может свободно циркулировать в теле и находится всегда там, где в ней возникает потребность.
  3. Организм должен быть в состоянии удалять избыточную энергию через адекватные движения.

Когда Вильгельм Райх за несколько дней до начала второй мировой войны получил место как экстраординарный профессор в Нью-Йорке в "Нью скул фор сошиал рисеч", он тут же поменял место жительства на США, где он создал собственный исследовательский центр в Мэне: "Оргонон"

С самого начала его работы в лаборатории приняли бурный характер, так как Райх был полон новых идей и динамика его работы всегда заражала его сотрудников. В эти годы он работал в таких различных областях, как психология, психоанализ, социология, физика, биология и метеорология, но всегда с одной целью: практическое применение энергии Оргон.
В многочисленных экспериментах, проведенных за многие годы вплоть до его смерти, в которых ему ассистировал маленький штаб сотрудников, он смог доказать, что Оргон является космической энергией, которая встречается всюду в космосе. Она существенным образом влияет на общую биологическую жизнь. Райх:

"Без сомнения, в организме имеется электричество в виде электрически заряженных коллоидных частиц и ионов. Вся коллоидная химия использует это. как и мускульная нейрофизиология... Но все же имеется ряд проявлений, которые мы никоим образом не можем объяснить в свете теории электромагнитной энергии. Это в первую очередь воздействие "магнетизма" тела. Многие врачи используют практически эти магнетические силы... Никто никогда не видел органическое движение при электрическом воздействии, которое имело бы хоть малейшее сходство с нашими ежедневными живыми движениями всей мускульной системы или функциональной группы мускулов... Наши органы восприятия ясно нам говорят, что эмоции (без сомнения, это выражение нашей биологической энергии) в принципиальном плане отличаются от чувств, которые можно пережить при электрическом ударе. Наши органы чувств полностью не справляются с воздействием электромагнитных волн, которые наполняют атмосферу...

Если бы наша жизненная энергия существовала в виде электричества, это было бы непонятно, так как органы восприятия являлись бы выражением этой энергии, почему нам доступно видеть только свет из всей области волн, а остальное недоступно. Мы не ощущаем ни электроны рентгеновского аппарата, ни излучение радия... До сих пор не удалось выразить в электрическом измерении витамины, которые несомненно содержат биологическую энергию... Это все огромные противоречия, которые нельзя разрешить в рамках известных форм энергии..."

В ходе своих исследований Райх создал плодотворные предпосылки к познанию взаимосвязи Оргона с другими формами энергии, как со светом и электричеством. При этом он исходил из того, что все формы энергии и вся материя произошли из Оргона.

Райх: "Энергия Оргон не имеет массы. Она первоначальна и существовала уже перед материей и другими формами энергии... Когда отдельные токи Оргона уплотняются и сплавляются друг с другом, они могут произвести: материю там, где до того она не существовала... Имеющаяся материя может от воздействия энергии Оргона спонтанно организоваться в живые формы там, где до этого не было никакой жизни... В естественной концентрации Оргон в состоянии организовать системы... Этими системами могут быть планеты, солнца и даже целые галактики..."

Физика элементарных частиц (элементарные частицы - это простейшие из известных до сих пор ядерных физических объектов, из которых состоят атомы) нашего времени знает действительно одну форму энергии, которая отвечает многим характеристикам, данным для жизненной энергии Райхом, - энергия нейтрино!

Когда мы говорим о космосе очень легко увлечься и уйти слишком далеко в область фантастики. Однако если сегодня на космическую энергетику выделяется катастрофически мало средств, то эффект от некоторых инноваций можно получить в уже ближайшем будущем.

Многие люди могут не догадываться, но исследования чистой энергии космоса всё-таки ведутся, хоть и не в таких объемах, которых они безусловно достойны. После нескольких десятилетий, многомиллиардных вливаний и пары-тройки технологических прорывов мы получим доступ к практически неограниченным запасам энергии нашего Солнца и, возможно, Вселенной.

Вам покажется это надуманным, но даже обычные фантазии на эту тему могут быть весьма занимательными. Представляем вам семь фактов о космической энергетике.

Факт первый.

В НАСА не устают повторять важность поучения солнечной энергии непосредственно из космоса вот уже несколько десятилетий. Если быть точными, то с 1970 года, через 10 лет после посадки Аполлона 11 на Луне в НАСА заявили о планах по строительству огромной солнечной электростанции на спутнике Земли. Лунная станция должна была обеспечить Землю достаточным количеством энергии после истощения ископаемых ресурсов. Эта задумка таки осталась не реализованной, но эксперты уверены, что план был разработан со всей тщательностью и после некоторой доработки может быть воплощен в жизнь.

Факт второй.

Эффективность солнечной батареи резко падает при увеличении количества тепла, проходящего через фотоэлементы. В космосе, с его низкими температурами, оказывается тоже есть проблема перегрева. Однако ученые Стэнфорда реализовали новую технологию изготовления батарей. Они разместили на поверхности фотоэлементов тонкую пленку диоксида кремния, которая отражает инфракрасное излучение пропуская остальной спектр солнечного света. Согласно заявлению разработчиков, такая технология позволила охладить батарею до 23 градусов по Цельсию и значительно увеличить эффективность фотоэлементов.

Факт третий.

Исследователи продолжают работы над солнечными элементами для использования их в межпланетных перелетах будущего. В университете Арканзаса ученые работают над созданием следующего поколения фотоэлектрических технологий для космоса. Соответствующий проект НАСА был недавно принят в качестве научной программы университета. Там сообщили, что новые технологии должны повысить производительность солнечных батарей, помогая НАСА достичь прорыва в 15-летних исследованиях и вывести эффективность фотоэлементов на 45 процентов от поглощаемой энергии. Кроме того, университетские разработки призваны снизить затраты на производство и сделать солнечные батареи более устойчивыми к излучению.

Факт четвертый.

Департамент энергетики США активно развивает отдельный интернет проект, посвященный идее получения солнечной энергии из космоса. Основной концепцией данного сайта является размещение солнечных батарей в космосе, что позволит им не зависеть от смены дня и ночи, а также от погодных условий и облачности на Земле.

Факт пятый.

Ученые выработали общие принципы функционирования космической солнечной энергостанции и сформулировали рабочие гипотезы передачи полученной электроэнергии на Землю. В прошлом году научно-исследовательская лаборатория ВМС США объявила, что д-р Пол Яффе, астронавт инженер, построил модель захвата и передачи солнечной энергии. Идея заключается в том, что размещенный на орбите спутник может передавать гораздо более дешевую электроэнергию на Землю. Джаффе пояснил как работает солнечный «сэндвич модуль»: Солнечная энергия преобразовывается в электрическую на орбите. Затем полученная электроэнергия конвертируется в радиочастотный импульс и отправляется на приемник на Земле. Тот в свою очередь переводит радиоимпульс в электричество и отдает солнечную энергию в сеть.

Факт шестой.

Китай намеревается построить рабочую солнечную электростанцию в открытом космосе. Ранее в этом году, китайские ученые объявили, что они начали строительство такой станции на высокой орбите Земли и планируют завершить тестирование всех систем до 2030 года. Промышленную эксплуатацию солнечной электростанции китайские коммунисты планируют начать в 2050 году. Они заявили, что располагают технологией передачи энергии из космоса на поверхность Земли.

Факт седьмой.

Япония успешно испытала систему, которая могла передавать солнечную энергию из космоса на Землю. Mitsubishi Heavy Industries протестировали систему трансляции солнечной энергии космических систем и показали отправку 10 киловатт при помощи микроволн на приемник, расположенный в горах. Хотя компания решила не объявлять, какой процент отправленной энергии был получен и переведен в электричество факт трансляции энергии из космоса был зафиксирован.

1968 : Питер Глейзер представил идею больших солнечных спутниковых систем с солнечным коллектором размером в квадратную милю на высоте геостационарной орбиты (ГСО 36000 км над экватором), для сбора и преобразования энергии солнца в электромагнитный пучок СВЧ для передачи полезной энергии на большие антенны на Земле.

1990 :"Исследовательским центром им. М. В. Келдыша" разработана концепция энергоснабжения Земли из космоса с использованием низких околоземных орбит. «Уже в 2020-2030 годы можно создать 10-30 космических электростанций, каждая из которых будет состоять из десяти космических энергомодулей. Планируемая суммарная мощность станций будет равна 1,5-4,5 ГВт, а суммарная мощность у потребителя на Земле - 0,75-2,25 ГВт». Далее планировалось к 2050-2100 годам довести количество станций до 800 единиц, а конечную мощность у потребителя до 960 ГВт. Однако на сегодняшний день неизвестно даже о создании рабочего проекта на основе этой концепции [ ] ;

2009 : Японское агентство аэрокосмических исследований объявило о своих планах вывести на орбиту спутник солнечной энергии, которые будут передавать энергию на Землю с помощью микроволн. Они надеются вывести первый прототип орбитального спутника к 2030 году.

2009 : Компания Solaren расположенная в Калифорнии (США) подписала договор с компанией PG&E о том, что последняя будет покупать энергию, которую Solaren произведет в космосе. Мощность будет составлять 200 МВт. По плану этой энергией будут питаться 250 000 домов. Реализация проекта планируется на 2016 год.

2011 : Объявлено о проекте нескольких японских корпораций, который должен быть реализован на базе 40 спутников с прикрепленными солнечными батареями. Флагманом проекта должна стать корпорация Mitsubishi . Передача на землю будет осуществляться с применением электромагнитных волн, приёмником должно стать «зеркало» диаметром около 3 км, которое будет находиться в пустынном районе океана . По состоянию на 2011 год планируется запустить проект в 2012 году

2013 : Главное научное учреждение Роскосмоса - ЦНИИмаш выступил с инициативой создания российских космических солнечных электростанций (КСЭС) мощностью 1-10 ГВт с беспроводной передачей электроэнергии наземным потребителям. В ЦНИИмаше обращают внимание, что американские и японские разработчики пошли по пути использования СВЧ -излучения, которое сегодня представляется значительно менее эффективным, чем лазерное .

Спутник для выработки энергии

История идеи

Изначально идея появилась в 1970-х годах. Появление такого проекта было связано с энергетическим кризисом. В связи с этим правительство США выделило 20 миллионов долларов космическому агентству NASA и компании Boeing для расчёта целесообразности проекта гигантского спутника SPS (Solar Power Satellite).

После всех расчётов оказалось, что такой спутник вырабатывал бы 5000 мегаватт энергии, после передачи на землю оставалось бы 2000 мегаватт. Чтобы понять много это или нет, стоит сравнить эту мощность с Красноярской ГЭС , мощность которой составляет 6000 мегаватт. Но примерная стоимость такого проекта 1 триллион долларов, что и послужило причиной закрытия программы.

Схема технологии

Система предполагает наличие аппарата-излучателя, находящегося на геостационарной орбите . Предполагается преобразовывать солнечную энергию в форму, удобную для передачи (СВЧ , лазерное излучение), и передавать на поверхность в «концентрированном» виде. В этом случае на поверхности необходимо наличие «приёмника», воспринимающего эту энергию .

Космический спутник по сбору солнечной энергии по существу состоит из трех частей:

  • средства сбора солнечной энергии в космическом пространстве, например, через солнечные батареи или тепловой двигатель Стирлинга ;
  • средства передачи энергии на землю, например, через СВЧ или лазер;
  • средства получения энергии на земле, например, через ректенны .

Космический аппарат будет находиться на ГСО и ему не нужно поддерживать себя против силы тяжести. Он также не нуждается в защите от наземного ветра или погоды, но будет иметь дело с космическими опасностями, такими как микрометеориты и солнечные бури .

Актуальность в наши дни

Так как за 40 лет со времени появления идеи солнечные батареи сильно упали в цене и увеличились в производительности, а грузы на орбиту стало доставлять дешевле, в 2007 году «Национальное космическое общество» США представило доклад в котором говорит о перспективах развития космической энергетики в наши дни.

Преимущества системы

  • Высокая эффективность из-за того, что нет атмосферы, выработка энергии не зависит от погоды и времени года.
  • Практически полное отсутствие перерывов так как кольцевая система спутников, опоясывающая Землю, в любой момент времени будет иметь хотя бы один, освещаемый Солнцем.

Лунный пояс

Проект космической энергетики представленный компанией Shimizu в 2010 году . По задумке японских инженеров это должен быть пояс из солнечных батарей протянутый по всему экватору Луны (11 тыс. километров) и шириной 400 километров.

Солнечные панели

Так как производство и транспортировка такого количества солнечных батарей с земли не представляется возможным, то по замыслу ученых солнечные элементы должны будут производиться прямо на Луне. Для этого можно использовать лунный грунт из которого можно делать солнечные батареи.

Передача энергии

Энергия с этого пояса будет передаваться радиоволнами с помощью громадных 20 километровых антенн и приниматься ректеннами здесь, на Земле. Второй способ передачи который может использоваться это передача световым лучом с помощью лазеров и прием свето-уловителем на земле.

Преимущества системы

Так как на Луне нет атмосферы и погодных явлений, энергию можно будет вырабатывать почти круглосуточно и с большим коэффициентом эффективности.

Дэвид Крисуэлл предположил, что Луна является оптимальным местом для солнечных электростанций. Основное преимущество размещения солнечных коллекторов энергии на Луне в том, что большая часть солнечных батарей может быть построена из местных материалов, вместо земных ресурсов, что значительно снижает массу и, следовательно, расходы по сравнению с другими вариантами космических солнечных электростанций.

Технологии применяющиеся в космической энергетике

Беспроводная передача энергии на Землю

Беспроводная передача электроэнергии была предложена на ранней стадии в качестве средства для передачи энергии от космической или Лунной станции к Земле. Энергия может быть передана с помощью лазерного излучения или СВЧ на различных частотах в зависимости от конструкции системы. Какой выбор был сделан, чтобы передача излучения была не ионизирующей, во избежание возможных нарушений экологии или биологической системы региона получения энергии? Верхний предел для частоты излучения установлен таким, чтобы энергия на один фотон не вызывала ионизацию организмов при прохождении через них. Ионизация биологических материалов начинается только с ультрафиолетового излучения и, как следствие, проявляется при более высоких частотах, поэтому большое количество радиочастот будет доступно для передачи энергии.

Лазеры

Преобразование солнечной энергии в электрическую

В космической энергетике (в существующих станциях и при разработках космических электростанций) единственный способ эффективного получения энергии это использование фотоэлементов. Фотоэлемент - электронный прибор, который преобразует энергию фотонов в электрическую энергию . Первый фотоэлемент, основанный на внешнем фотоэффекте, создал Александр Столетов в конце XIX века. Наиболее эффективными, с энергетической точки зрения, устройствами для превращения солнечной энергии в электрическую являются полупроводниковые фотоэлектрические преобразователи (ФЭП), поскольку это прямой, одноступенчатый переход энергии. КПД производимых в промышленных масштабах фотоэлементов в среднем составляет 16 %, у лучших образцов до 25 %. В лабораторных условиях уже достигнут КПД 43 % .

Получение энергии от СВЧ волн испускаемых спутником

Так же важно почеркнуть способы получения энергии. Один из них это получение энергии с помощью ректенн. Ректенна (выпрямляющая антенна) - устройство , представляющее собой нелинейную антенну, предназначенную для преобразования энергии поля падающей на неё волны в энергию постоянного тока . Простейшим вариантом конструкции может быть полуволновый вибратор, между плечами которого устанавливается устройство с односторонней проводимостью (например диод). В таком варианте конструкции антенна совмещается с детектором, на выходе которого, при наличии падающей волны, появляется ЭДС. Для повышения усиления такие устройства могут быть объединены в многоэлементные решётки.

Преимущества и недостатки

Космическая солнечная энергия - энергия, которую получают за пределами атмосферы Земли. При отсутствии загазованности атмосферы или облаков, на Землю падает примерно 35 % энергии от той, которая попала в атмосферу. Кроме того, правильно выбрав траекторию орбиты, можно получать энергию около 96 % времени. Таким образом, фотоэлектрические панели на геостационарной орбите Земли (на высоте 36000 км) будет получать в среднем в восемь раз больше света, чем панели на поверхности Земли и даже больше когда космический аппарат будет ближе к Солнцу чем Земля. Дополнительным преимуществом является тот факт, что в космосе нет проблемы с весом или коррозии металлов из-за отсутствия атмосферы.

С другой стороны, главный недостаток космической энергетики и по сей день является её высокая стоимость. Средства, затраченные на вывод на орбиту системы общей массой 3 млн т. окупятся только в течение 20 лет, и это если принимать в расчёт удельную стоимость доставки грузов с Земли на рабочую орбиту 100 $/кг. Нынешняя же стоимость вывода грузов на орбиту намного больше.

Вторая проблема создания ОЭС - большие потери энергии при передаче. При передаче энергии на поверхность Земли будет потеряны, по крайней мере, 40-50 %.

Основные технологические проблемы

По данным американских исследований 2008 года, есть пять основных технологических проблем, которые наука должна преодолеть, чтобы космическая энергия стала легкодоступной:

  • Фотоэлектрические и электронные компоненты должны работать с высокой эффективностью при высокой температуре.
  • Беспроводная передача энергии должна быть точной и безопасной.
  • Космические электростанции должны быть недорогими в производстве.
  • Низкая стоимость космических ракет-носителей.
  • Поддержание постоянного положения станции над приёмником энергии: давление солнечного света будет отталкивать станцию от нужного положения, а давление электромагнитного излучения , направленного на Землю, будет толкать станцию от Земли.

Другие способы использования космической энергии

Использование электроэнергии в космических полетах

Кроме того, чтобы излучать энергию на Землю, спутники ОЭС могут также питать межпланетные станции и космические телескопы. Так же это может быть безопасной альтернативой ядерным реакторам на корабле который полетит на красную планету . Другой сектор, который может извлечь выгоду из ОЭС будет космический туризм .

Примечания

  1. Glaser, Peter E. (December 25, 1973). “Method And Apparatus For Converting Solar Radiation To Electrical Power” . United States Patent 3,781,647 .

Двадцать лет спустя

Технические преимущества

Россия обладает еще одним технологическим преимуществом

Ждем ваших комментариев.

Еще в начале 90-х годов в России разрабатывалась концепция освоения солнечного космического пространства. Она предусматривала, что в 2020-2030 гг. на околоземной орбите будет построено 10-30 солнечных станций, с суммарной мощностью на приеме до 2,5 ГВт. К 2050-2100 гг. количество станций планировалось довести до 800, с суммарной мощностью, как у тысячи ДнепроГЭСов (960 ГВт). Но глобальный экономический кризис разрушил все эти планы.

Двадцать лет спустя

За двадцать лет состояние в солнечной энергетике кардинально изменилась. Солнечные батареи значительно подешевели, при этом возросли их эффективность и КПД. На фоне этого вновь появился интерес к космическим солнечным станциям. По словам экспертов, именно сейчас формируется рынок космического электричества. На то есть несколько причин:

экологическая чистота (никаких вредных выбросов),

низкая стоимость электроэнергии (правда, при огромных первоначальных затратах),

независимость от иссякаемых природных ресурсов.

И Россия имеет уникальный шанс стать лидером в этой области.

Технические преимущества

В 1993 году всю Европу удивил огромный (величиной с Луну) «солнечный зайчик», который быстро двигался через весь континент. Это была блестящая реализация уникального проекта «Знамя». В космос доставили капсулу, в которой было упаковано «полотно» солнечного отражателя. На орбите отражатель развернулся во всю свою гигантскую ширину, при этом площадка в 300 м2 была толщиной в 2 мм и весила всего 4 кг.

Больше никому в мире не удалось это повторить. Сегодня только Россия владеет этой технологией и патентом на нее.

Другие «космические» разработчики, японцы и американцы, предпочитают работать «по-земному» — собирать жесткие конструкции в сотни и тысячи квадратных метров.

Россия обладает еще одним технологическим преимуществом

Энергию из космоса можно передавать двумя способами: радиоволнами сверхвысокочастотного излучения (СВЧ) и лазером. Диаметр СВЧ луча у поверхности земли 20 км, а лазера — 40 м. Получается, что использование лазера намного более эффективно.

Сегодня именно наша страна является мировым лидером по производству лазеров, выпуская 70% от общего объема.

Обладание передовой лазерной техникой и уникальной технологией развертывания бескаркасных солнечных батарей, дает России возможность не только стать первыми в освоении солнечной космической энергии и в передаче на землю, но сделать это с наименьшими материальными затратами.

Спасибо, что дочитали до конца.

Ждем ваших комментариев.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru

Введение

Космическая энергетика -- вид альтернативной энергетики, предусматривающий использование энергии Солнца для выработки электроэнергии, с расположением энергетической станции на земной орбите или на Луне.

Еще начиная с 70-х годов прошлого столетия, люди задумывались над тем, чтобы получать энергию прямо из космоса. Впервые такую идею описал Айзек Азимов в своем фантастическом рассказе «Логика». А первый патент, который описывал технологию передачи электроэнергии с помощью микроволн на значительное расстояние, получил Питер Глейзер в 1973 году. Хотя НАСА тогда не взялась за разработку этой идеи, посчитав ее слишком дорогой и опасной. Никто не мог гарантировать, что волны с точностью попадут с одной антенны на другую.

1. Спутник для выработки энергии

Разработка концепции.

Разработала концепцию солнечного спутника команда инженеров из калифорнийской компании Artemis Innovation Management Solutions во главе с Джоном Манкинсом. Как говорят разработчики, проект имеет важные преимущества перед предлагаемыми ранее технологиями. Инновационный подход к построению космического устройства устраняет необходимость в сложной системе управления питанием и системе распределения энергии.

Спутниковая солнечная электростанция будет собрана в космосе из отдельных элементов весом 49,5 - 198 килограммов, каждый из которых будет изготовлен по отдельности на Земле и доставлен на орбиту. По сути, она представляет собой огромный массив подвижных тонкопленочных зеркал, расположенных на внешней изогнутой поверхности спутника. Эти зеркала перехватывают и перенаправляют солнечный свет на фотоэлементы, расположенные на обратной стороне массива, которые вырабатывают электричество. Сторона спутника, обращенная к Земле, представляет собой круглый модульный массив, покрытый панелями микроволновой передачи энергии. Эти панели генерируют пучки радиочастотной энергии низкой интенсивности, которые будут передаваться на Землю.

После всех расчётов оказалось, что такой спутник вырабатывал бы 5000 мегаватт энергии, после передачи на землю оставалось бы 2000 мегаватт. Чтобы понять много это или нет, стоит сравнить эту мощность с Красноярской ГЭС, мощность которой составляет 6000 мегаватт.

Схема технологии.

Система предполагает наличие аппарата-излучателя, находящегося на геостационарной орбите. Предполагается преобразовывать солнечную энергию в форму, удобную для передачи (СВЧ, лазерное излучение), и передавать на поверхность в «концентрированном» виде. В этом случае на поверхности необходимо наличие «приёмника», воспринимающего эту энергию.

Космический спутник по сбору солнечной энергии по существу состоит из трех частей:

· средства сбора солнечной энергии в космическом пространстве, например, через солнечные батареи или тепловой двигатель Стирлинга;

· средства передачи энергии на землю, например, через СВЧ или лазер;

· средства получения энергии на земле, например, через ректенны.

Космический аппарат будет находиться на ГСО и ему не нужно поддерживать себя против силы тяжести. Он также не нуждается в защите от наземного ветра или погоды, но будет иметь дело с космическими опасностями, такими как микрометеориты и солнечные бури.

Актуальность в наши дни.

Так как за 40 лет со времени появления идеи солнечные батареи сильно упали в цене и увеличились в производительности, а грузы на орбиту стало доставлять дешевле, в 2007 году «Национальное космическое общество» США представило доклад, в котором говорит о перспективах развития космической энергетики в наши дни.

Преимущество системы

· Высокая эффективность из-за того, что нет атмосферы, выработка энергии не зависит от погоды и времени года.

· Практически полное отсутствие перерывов, так как кольцевая система спутников, опоясывающая Землю, в любой момент времени будет иметь хотя бы один, освещаемый Солнцем.

2. Лунный пояс

Проект космической энергетики, представленный компанией Shimizu в 2010 году. По задумке японских инженеров это должен быть пояс, из солнечных батарей протянутый по всему экватору Луны (11 тыс. километров) и шириной 400 километров.

Солнечные панели.

Так как производство и транспортировка такого количества солнечных батарей с земли не представляется возможным, то по замыслу ученых солнечные элементы должны будут производиться прямо на Луне. Для этого можно использовать лунный грунт, из которого можно делать солнечные батареи.

Передача энергии.

Энергия с этого пояса будет передаваться радиоволнами с помощью громадных 20 километровых антенн, и приниматься ректеннами здесь на земле. Второй способ передачи, который может использоваться это передача световым лучом с помощью лазеров и прием светоуловителем на земле.

Преимущества системы.

Так как на Луне нет атмосферы и погодных явлений, энергию можно будет вырабатывать почти круглосуточно и с большим коэффициентом эффективности.

Дэвид Крисуэлл предположил, что Луна является оптимальным местом для солнечных электростанций. Основное преимущество размещения солнечных коллекторов энергии на Луне в том, что большая часть солнечных батарей может быть построена из местных материалов, вместо земных ресурсов, что значительно снижает массу и, следовательно, расходы по сравнению с другими вариантами космических солнечных электростанций.

3. Технологии, применяющиеся в космической энергетике

космический лазерный электроэнергия

Беспроводная передача энергии на Землю.

Беспроводная передача электроэнергии была предложена на ранней стадии в качестве средства для передачи энергии от космической или Лунной станции к Земле. Энергия может быть передана с помощью лазерного излучения или СВЧ на различных частотах в зависимости от конструкции системы. Основная проблема использования СВЧ является нарушение экологической и биологической системы региона получения энергии. Ионизация биологических материалов начинается только с ультрафиолетового излучения и появляется при более высоких радиочастотах. Поэтому необходимо будет использовать частоты ниже ультрафиолетового излучения.

Исследователи НАСА работали в 1980-х годах с возможностью использования лазеров для излучения энергии между двумя точками в пространстве. В перспективе эта технология станет альтернативным способом передачи энергии в космической энергетике. В 1991 году начался проект SELENE, который предполагал создание лазеров для космической энергетики, в том числе и для излучения энергии лазером на лунные базы. В 1988 Грант Логан предложили использовать лазер, размещенный на Земле, чтобы обеспечить энергией космические станции, предположительно это можно было осуществить в 1989. Предлагалось использование солнечных элементов из алмаза при температуре 300 °C для преобразования ультрафиолетового лазерного излучения. Проект SELENE продолжал работать над этой концепцией, пока не был официально закрыт в 1993 после двух лет исследований, так и не осуществив тестирования технологии на большие расстояния. Причина закрытия: высокая стоимость осуществления.

Преобразование солнечной энергии в электрическую.

В космической энергетике единственный способ эффективного получения энергии это использование фотоэлементов. Наиболее эффективными, с энергетической точки зрения, устройствами для превращения солнечной энергии в электрическую являются полупроводниковые фотоэлектрические преобразователи (ФЭП), поскольку это прямой, одноступенчатый переход энергии. КПД производимых в промышленных масштабах фотоэлементов в среднем составляет 16 %, у лучших образцов до 25 %. В лабораторных условиях уже достигнут КПД 43 %.

Получение энергии от СВЧ волн испускаемых источником.

Так же важно почерпнуть способы получения энергии. Один из них это получение энергии с помощью ректенн. Ректенна (выпрямляющая антенна) -- устройство, представляющее собой нелинейную антенну, предназначенную для преобразования энергии поля падающей на неё волны в энергию постоянного тока.

Преимущества и недостатки.

Космическая солнечная энергия -- энергия, которую получают за пределами атмосферы Земли. При отсутствии загазованности атмосферы или облаков, на Землю падает примерно 35 % энергии от той, которая попала в атмосферу. Кроме того, правильно выбрав траекторию орбиты, можно получать энергию около 96 % времени. Таким образом, фотоэлектрические панели на геостационарной орбите Земли (на высоте 36000 км) будет получать в среднем в восемь раз больше света, чем панели на поверхности Земли и даже больше когда космический аппарат будет ближе к Солнцу, чем Земля. Дополнительным преимуществом является тот факт, что в космосе нет проблемы с весом или коррозии металлов из-за отсутствия атмосферы.

С другой стороны, главный недостаток космической энергетики и по сей день является её высокая стоимость. Средства, затраченные на вывод на орбиту системы общей массой 3 млн. т. окупятся только в течение 20 лет, и это если принимать в расчёт удельную стоимость доставки грузов с Земли на рабочую орбиту 100 $/кг. Нынешняя же стоимость вывода грузов на орбиту намного больше.

Основные технологические проблемы.

По данным исследований 2008 года, есть пять основных технологических проблем, которые наука должна преодолеть, чтобы космическая энергия стала легкодоступной.

· Фотоэлектрические и электронные компоненты должны работать с высокой эффективностью при высокой температуре.

· Беспроводная передача энергии должна быть точной и безопасной.

· Космические электростанции должны быть недорогими в производстве.

· Низкая стоимость космических ракет-носителей.

· Поддержание постоянного положения станции над приёмником энергии: давление солнечного света будет отталкивать станцию от нужного положения, а давление электромагнитного излучения, направленного на Землю, будет толкать станцию от Земли.

Размещено на Allbest.ru

...

Подобные документы

    Солнечная энергетика. История развития солнечной энергетики. Способы получения электричества и тепла из солнечного излучения. Достоинства и недостатки использования солнечной энергетики. Типы фотоэлектрических элементов. Технологии солнечной энергетики.

    реферат , добавлен 30.07.2008

    Рентабельность развития солнечной космической электростанции, этапы и направления данного процесса, его перспективы, значение. Фотоэлектрическое преобразование солнечного излучения. Беспроводная передача энергии с использованием уравнения передачи Фриис.

    курсовая работа , добавлен 17.06.2012

    Возрастание интереса к проблеме использования солнечной энергии. Разные факторы, ограничивающие мощность солнечной энергетики. Современная концепция использования солнечной энергии. Использование океанской энергии. Принцип действия всех ветродвигателей.

    реферат , добавлен 20.08.2014

    Ознакомление с основными направлениями и перспективами развития альтернативной энергетики. Определение экономических и экологических преимуществ использования ветровой, солнечной, геотермальной, космической, водородной, сероводородной энергии, биотоплива.

    реферат , добавлен 15.12.2010

    Сущность и краткая характеристика видов энергии. Особенности использования солнечной и водородной энергии. Основные достоинства геотермальной энергии. История изобретения "ошейника" А. Стреляемым, принцип его работы и потребления энергии роста растений.

    презентация , добавлен 20.12.2009

    Геотермальная энергия и ее использование. Применение гидроэнергетических ресурсов. Перспективные технологии солнечной энергетики. Принцип работы ветроустановок. Энергия волн и течений. Состояние и перспективы развития альтернативной энергетики в России.

    реферат , добавлен 16.06.2009

    Количество солнечной энергии, попадающей на Землю, ее использование человеком. Способы пассивного применения солнечной энергии. Солнечные коллекторы. Технологический цикл солнечных тепловых электростанций. Промышленные фотоэлектрические установки.

    презентация , добавлен 06.12.2015

    Производство электроэнергии различными способами. Фотоэлектрические установки, системы солнечного теплоснабжения, концентрирующие гелиоприемники, солнечные коллекторы. Развитие солнечной энергетики. Экологические последствия развития солнечной энергетики.

    реферат , добавлен 27.10.2014

    Основные сведения об альтернативной энергетики. Преимущества и недостатки вакуумных коллекторов. Снижение зависимости от поставок энергоносителей. Применение фокусирующих коллекторов. Преимущества использования экологически чистой солнечной энергии.

    реферат , добавлен 21.03.2015

    Обзор технологий и развитие электроустановок солнечных электростанций. Машина Стирлинга и принцип ее действия. Производство электроэнергии с помощью солнечных батарей. Использования солнечной энергии в различных отраслях производства промышленности.

Выбор редакции
В конце апреля астрономы в северном полушарии получат возможность наблюдать метеоритный дождь Лириды, который является пыльным следом ,...

Как вы думаете, если бы Луна была ближе к нашей планете, чем сейчас, как бы она выглядела? Но давайте обо всем по порядку. Ученые – люди...

Споры о том, реальны ли путешествия во времени, не утихают годами. Раньше считалось, что такие истории - удел поклонников теорий...

В космосе нет атмосферы, там никогда не идет дождь, а на геостационарных орбитах никогда не наступает ночь: это идеальное место для...
В последующие годы многие страны заинтересовались космической солнечной энергетикой, включая Японию, Китай и несколько европейских стран....
Акула – самый опасный хищник моряАкула предшественник динозавра. Она старше динозавров на 200 миллионов лет. При этом, за 450 миллионов...
Представление о существовании универсальной космической энергии, которую человек может использовать и с помощью которой реализуются...
Архимандрит Мелхиседек (Артюхин).Беседы с батюшкой «Где просто, там ангелов со сто…» В ноябре 1987 г. Оптина Пустынь была возвращена...
В а н я (в кучерском армячке). Папаша! кто строил эту дорогу? П а п а ш а (в пальто на красной подкладке), Граф Петр Андреевич...