Какие типы взаимодействия являются короткодействующими? Привести примеры систем, в которых действуют эти силы. Что такое система?(домашняя работа) Что такое система примеры систем


Самолет - это летательный аппарат тяжелее воздуха с аэродинамическим принципом полета. Самолет представляет собой сложную динамическую систему с развитой иерархической структурой, состоящую из взаимосвязанных по назначению, месту и функционированию элементов; в нем можно выделить подсистемы создания подъемной и движущей сил, обеспечения устойчивости и управляемости, жизнеобеспечения, обеспечения выполнения целевой функции и др.

Вычислительная сеть – сложная система, которая состоит из вычислительных машин и сети передачи данных (сети связи). Основное назначение вычислительных сетей - обеспечение взаимодействия удаленных пользователей на основе обмена данными по сети и совместное использование сетевых ресурсов (вычислительных машин, прикладных программ и периферийных устройств).

Если объект обладает всеми признаками системы, то говорят, что он является системным . Приведенные примеры систем иллюстрируют наличие таких факторов системности, как:

· целостность и возможность декомпозиции на элементы (в вычислительной сети это вычислительные машины, средства связи и др.);

· наличие стабильных связей (отношений) между элементами ;

· упорядоченность (организация) элементов в определенную структуру ;

· наделение элементов параметрами;

· наличие интегративных свойств , которыми не обладают ни один из элементов системы;

· наличие множества законов, правил и операций с вышеперечисленными атрибутами системы;

· наличие цели функционирования и развития.

Системы разделяют на классы по различным признакам, и в зависимости от решаемой задачи можно выбирать разные принципы классификации. Признак или их совокупность, по которым объекты объединяются в классы, являются основанием классификации. Класс - это совокупность объек­тов, обладающих некоторыми признаками общности.

Классификаций систем в науке достаточно много. Так, например, одна из них предусматривает деление систем на два вида - абст­рактные и материальные.

Материальные системы являются объектами реального времени. Среди всего многообразия материальных сис­тем существуют естественные и искусственные системы.



Естественные системы представляют собой совокуп­ность объектов природы и подразделя­ются на астрокосмические и планетарные, физические и химические.

Искусственные системы – это со­вокупность социально-экономических или технических объектов. Они могут быть классифицирова­ны по нескольким признакам, главным из которых явля­ется роль человека в системе. По этому признаку можно выделить два класса систем: технические и организационно-экономические системы.

Абстрактные системы - это умозрительное представ­ление образов или моделей материальных систем, кото­рые подразделяются на описательные (логические) и сим­волические (математические).

Описательные системы есть результат дедуктивного или индуктивного представления материальных систем. Их можно рассматривать как системы понятий и определе­ний (совокупность представлений) о структуре, об основ­ных закономерностях состояний и о динамике матери­альных систем.

Символические системы представляют собой формали­зацию логических систем, они подразделяются на три класса:

статические математические системы или модели, которые можно рассматривать как описание средствами математического аппарата состояния материальных систем (уравнения состояния);

динамические математические системы или модели, которые можно рассматривать как математическую формализацию процессов материальных (или абстрактных) си­стем;

квазистатические (квазидинамические) системы, находящиеся в неустойчивом положении между статикой и динамикой, которые при одних воздействиях ведут себя как статические, а при других воздействиях - как дина­мические.

В научной литературе можно найти и другие типы классификаций.

· по виду отображаемого объекта - технические, биологические, социальные и т.п.;

· по характеру поведения - детерминированные, вероятностные, игровые;

· по типу целеустремленности - открытые и закрытые;

· по сложности структуры и поведения - простые и сложные;

· по виду научного направления , используемого для их моделирования - математические, физические, химические и др.;

· по степени организованности - хорошо организованные, плохо организованные и самоорганизующиеся.

Каждая система обладает определенными свойствами, связанными с ее функционированием. Наиболее часто выделяют следующие:

· синергичность - максимальный эффект деятельности системы достигается только в случае максимальной эффективности совместного функционирования её элементов для достижения общей цели;

· эмерджентность - появление у системы свойств, не присущих элементам системы; принципиальная несводимость свойства системы к сумме свойств составляющих её компонентов (неаддитивность);

· целенаправленность - наличие у системы цели (целей) и приоритет целей системы перед целями её элементов;

· альтернативность - функционирования и развития (организация или самоорганизация);

· структурность - возможна декомпозиция системы на компоненты, установление связей между ними;

· иерархичность - каждый компонент системы может рассматриваться как система; сама система также может рассматриваться как элемент некоторой надсистемы (суперсистемы);

· коммуникативность - существование сложной системы коммуникаций со средой в виде иерархии;

· адаптивность - стремление к состоянию устойчивого равновесия, которое предполагает адаптацию параметров системы к изменяющимся параметрам внешней среды;

· интегративность - наличие системообразующих, системосохраняющих факторов;

· эквифинальность - способность системы достигать состояний, не зависящих от исходных условий и определяющихся только параметрами системы.

Связь

Наибольшая смысловая нагрузка в системном анализе при­ходится на понятие «связь». Приведем примеры связей. Мозг человека развивается и состоит из 14 млрд. нервных клеток. Каждая из них имеет 5000 связей с другими. Любой закон природы и общества - это есть внут­ренняя, устойчивая, существенная связь и взаимная обусловленность явлений. Нет закона вне связи!

В диалектике проблема связи является одной из центральных. Учение диалектики о связях охватывает учение о мире как о едином связном целом, о при­чинности, о единстве и борьбе противоположностей, о взаимоотношении качества и количества, содержания и формы, сущности и явления и т.д., а основным методом исследования является анализ материала конкретных наук в плане разработки обобщающей картины мира.

Связь предметов можно определить таким образом: два или более различных предмета связаны, если по наличию или отсутствию некоторых свойств у одних из них мы можем судить о наличии или отсутствии тех или иных свойств у других из них (возникновение и исчезновение предметов можно рассматривать как частный случай). Например , температура и давление данной массы газа связаны так, что с увеличением температу­ры (при всех прочих постоянных условиях) увеличивается давление. Зная о том, что температура увеличилась, мы мо­жем делать вывод об увеличении давления (если выяснены точные количественные соотношения, то они будут учтены и в выводах).

Классификация связей может быть следующая:

1. Связи взаимодействия (координации), среди кото­рых можно различить связи свойства (такие связи фик­сируются, например, в формулах физики типа pV = const) и связи объектов (например, связи между отдельными нейронами в тех или иных нервно-психических процессах). Особый вид связей взаимодей­ствия составляют связи между отдельными людьми, а так­же между человеческими коллективами или социальны­ми системами. Специфика этих связей состоит в том, что они опосредуются целями, которые преследует каждая из сторон взаимодействия. В рамках этого типа связей можно различить кооперативные и конфликтные связи.

2. Связи порождения (генетические), когда один объект выступает как основание, вызывающие к жизни другой (например, связь типа «А отец В»).

3. Связи преобразования, среди которых можно различить: связи преобразования, реализуемые через определенный объект, обеспечивающий это преобразование (такова функция химических катализаторов), и связи преобразования, реализуемые путем непосредственного взаимодействия двух или более объектов, в процессе которо­го и благодаря которому эти объекты порознь или совместно переходят из одного состояния в другое (таково, напри­мер, взаимодействие организмов и среды в процессе видообразования).

4. Связи строения (их нередко называют структурны­ми). Природа этих связей с достаточной ясностью раскрывается на примере химических связей.

5. Связи функционирования, обеспечивающие реальную жизнедеятельность объекта или его работу, если речь идет о технической системе. Очевидное многообразие функции в объектах различного рода определяет и многообразие видов связей функционирования. Общим для всех этих видов является то, что объекты, объединяемые связью, совместно осуществляют определенную функцию, причем эта функция может характеризовать либо один из этих объектов (в таком случае другой является функциональ­но-производным от первого, как это имеет место в функ­циональных системах живого организма), либо более широ­кое целое, по отношению к которому и имеет смысл функ­циональная связь данных объектов (таковы связи между нейронами при осуществлении тех или иных функций центральной нервной системы). В самом общем виде свя­зи функционирования можно подразделить на связи со­стояний (когда следующее по времени состояние является функцией от предыдущего) и связи энергетические, трофические, нейронные и т.п. (когда объекты связаны единством реализуемой функции).

6. Связи развития, которые можно рассматривать как модификацию функциональных связей состояний, с той, однако, разницей, что развитие существенно отличается от простой смены состояний.

7. Связи управления, которые в зависимости от их кон­кретного вида могут образовывать разновидность либо функциональных связей, либо связей развития.

Предлагая такую классификацию связей, философы отмечают ее условность, объясняя исключительно слож­ным характером возможных связей и их спецификой в конкретных системах.

Таким образом, в окружающем нас мире существует очень большое количество разных связей - многомер­ных, многогранных, многозначных, многоплановых, которые мы должны учиться познавать.

Среда

Среда – сфера, ограничивающая структурное образование системы (например, человек, берущий в руки брошюру). Среда есть все то, что воздействует на систему, но неподконтрольно ей. Воздействие среды на систему – это входные воздействия, или входы (перелистывание страниц брошюры человеком). Воздействие системы на среду – это выходные воздействия, реакция системы, или выходы (воздействие брошюры на зрение, обоняние, осязание читателя).

Сложное взаимодействие системы и среды как ее окружения определяется понятиями система и надсистема. Так, человек, читающий вслух брошюру, представляет собой информационную систему, являющуюся надсистемой по отношению к брошюре.

Надсистема - более крупная система, частью которой является рассматриваемая система.

Работа добавлена на сайт сайт: 2016-03-13

Заказать написание уникльной работы

">Вопросы входного контроля 3

  1. ">Сущность понятия «закономерность» 4
  2. ">Закономерности взаимодействия целого и частного 6
  3. ">Закономерности осуществимости систем 11
  4. ">Закономерности развития систем 14
  5. ">Закономерности целеобразования 16
  6. ">Список использованных источников 18

">Вопросы входного контроля:

  1. ">Что такое система? Приведите примеры различных систем.

">Система - множество элементов, находящихся в отношениях и связях друг с другом, которое образует определённую целостность, единство. Примеры: человек – это система биологическая, город Казань – система социально-экономическая, любое предприятие или организация – тоже система, телевизор – система, сотовый телефон – система, Периодическая система химических элементов Д. И. Менделеева – тоже система и т.д.

  1. ">Что такое закономерность?

">Закономерность – это объективная, необходимая, существенная, постоянно повторяющаяся связь или отношение между явлениями или процессами, которая порождает качественную определенность явлений и их свойства.

  1. ">Приведите примеры закономерностей?

">В биологии, например, говорят о закономерностях эволюции, к которым относят: параллелизм, когда один и тот же вид на различных географически отдаленных, но схожих по климату территориях развивается одинаково.

">Статистические закономерности. Например, несмотря на то, что конкретными примерами наибольшей продолжительности жизни являются мужчины (азербайджанец Ширали Мислимов прожил 168 лет (1805-1973)), закономерность считается, что в среднем женщины живут дольше мужчин на 10-15 лет.

">

  1. ">Сущность понятия закономерность. Понятия целого и части и их отношения с понятиями «система» и «элемент»

">На сегодняшний день однозначного понятия закономерности не существует. Различные авторы приводят разные трактовки данного понятия:

">Закономерность – это объективная, повторяющаяся при определенных условиях существенная связь явлений в природе и обществе. [Толковый словарь] Данный источник делает акцент на том, что закономерность это явление не зависящее от мышления человека (объективное) и циклически повторяющееся.

">Закономерность - мера вероятности наступления какого-то события или явления либо их взаимосвязи. [Добреньков В. Кравченко А.]

">Закономерности систем - это общесистемные закономерности, характеризующие принципиальные особенности построения, функционирования и развития сложных систем [Волкова, Емельянов].

">Понятие «система» и «целое», как и понятия «элемент» и «часть», близки по содержанию, но полностью не совпадают. Согласно одному из определений, «целым называется (1) то, у чего не отсутствует ни одна из тех частей, состоя из которых оно именуется целым от природы, а также (2) то, что так объемлет объемлемые им вещи, что последние образуют нечто одно» (Аристотель).

">Понятие «целое» по своему объему уже понятия системы. Системами являются не только целостные, но и суммативные системы, не принадлежащие к классу целостных. В этом первое отличие «целого» от «системы». Второе: в понятии «целое» акцент делается на специфичности, на единстве системного образования, а в понятии «система» - на единстве в многообразии. Целое соотносимо с частью, а система - с элементами и структурой.

">Понятие «часть» уже по своему объему, чем понятие «элемент» по первой линии отличия целостных образований от систем. С другой стороны, в части могут входить не только субстратные элементы, но и те или иные фрагменты структуры (совокупности отношений) и структура систем в целом. Если соотношение элементов и системы есть соотношение разных структурных уровней (или подуровней) организации материи, то соотношение частей и целого есть соотношение на одном и том же уровне структурной организации. «Часть, как таковая, имеет смысл только по отношению к целому, она несет на себе черты его качественной определенности и не существует самостоятельно. В отличие от части элемент является определенным компонентом любой системы, относительным пределом ее делимости, означающим переход к следующему, соответственно более низкому по организации уровню развития материи, и, следовательно, по отношению к системе всегда будет объектом иного качества» (О. С. Зелькина).

">«Целое» и «часть» - это не совпадающие, противоположные категории. В части - не только специфичность целого, но и индивидуальность, своеобразие, зависящее от природы исходного элемента. Часть отделена от целого, обладает относительной автономностью, выполняет свои функции в составе целого (одни части - более существенные функции, другие - менее существенные). Наряду с этим «целое управляет частью... по крайней мере в главном» (И. Дицген).

">Наиболее распространенная классификация закономерностей развития систем приведена на рисунке 1.1

">Рис 1.1. Классификация закономерностей развития систем ">

  1. ">Закономерности взаимодействия целого и частного

">Закономерность целостности (эмерджентности) ">- закономерность, проявляющаяся в системе в виде возникновения, появления (emerge - появляться) у нее новых свойств, отсутствующих у элементов.

">Для того чтобы глубже понять закономерность целостности, необходимо прежде всего учитывать три ее стороны:

">1) свойства системы (" xml:lang="en-US" lang="en-US">Q ;vertical-align:sub" xml:lang="en-US" lang="en-US">s ">) не являются суммой свойств составляющих её элементов " xml:lang="en-US" lang="en-US">q ;vertical-align:sub" xml:lang="en-US" lang="en-US">i "> :

">2) свойства системы зависят от свойств составляющих её элементов:

">3) объединенные в систему элементы, как правило, утрачивают часть своих свойств, присущих им вне системы, т.е. система как бы подавляет ряд свойств элементов, но, с другой стороны, элементы, попав в систему, могут приобрести новые свойства.

">Свойство целостности тесно связано ">с целью ">, для выполнения которой создается система. При этом если цель не задана в явном виде, а у отображаемого объекта наблюдаются целостные свойства, можно попытаться определить цель или выражение, связывающее цель со средствами ее достижения (целевую функцию, системообразующий критерий), путем изучения причин появления закономерности целостности.

">Наряду с изучением причин возникновения целостности можно получать полезные для практики результаты путем сравнительной оценки степени целостности систем (и их структур) при неизвестных причинах ее возникновения.

">Закономерность интегративности. ">Интегративность определяет наличие специфических качеств системы, присущих только ей. Данные качества формируются определенной совокупностью элементов, которые не могут в отдельности воспроизвести качества системы. Интегративность системы часто употребляется как синоним целостности, но им подчеркивается интерес не к внешним фактам проявления целостности, а к более глубоким причинам формирования этого свойства. Интегративными называют системообразующие, системосохраняющие факторы, важными среди которых являются неоднородность и непротиворечивость ее элементов.

">Закономерность коммуникативности ">. Эта закономерность составляет основу определения системы, предложенного В. Н. Садовским и Э. Г. Юдиным, из которого следует, что система не изолирована от других систем, она связана множеством коммуникаций с внешней средой. Последняя представляет собой сложное и неоднородное образование, которое, в свою очередь, содержит систему более высокого порядка или надсистему (или надсистемы), задающую требования и ограничения исследуемой системе. Кроме этого, она может содержать также подсистемы (нижележащие, подведомственные системы) и системы одного уровня с уровнем рассматриваемой.

">Таким образом, закономерность коммуникативности предполагает, что система образует особое, сложное единство со средой, которое позволяет вскрыть механизмы построения общих моделей живой и неживой природы, а также любых выде­ленных из нее локальных систем на разных уровнях анализа.

">В силу закономерности коммуникативности, которая проявляется не только между выделенной системой и ее окружением, но и между уровнями иерархии исследуемой системы, каждый уровень иерархической упорядоченности имеет сложные взаимоотношения с вышестоящим и нижележащим уровнями.

">Первооткрывателем "> закономерности иерархичности или иерархической упорядоченности ">можно считать Л. фон Берталанфи, который показал связь иерархической упорядоченности мира с явлениями дифференциации и негэнтропийными тенденциями, т.е. с ">закономерностями самоорганизации ">, развития ">открытых систем ">.

">При анализе и изучении систем необходимо учитывать учитывать не только внешнюю структурную сторону иерархии, но и функциональные взаимоотношения между уровнями. Более высокий иерархический уровень оказывает ">направляющее воздействие "> на нижележащий уровень, подчиненный ему, и это воздействие проявляется в том, что подчиненные компоненты иерархии приобретают ">новые свойства ">, отсутствовавшие у них в изолированном состоянии, а в результате появления этих новых свойств формируется новый, другой «облик целого». Возникшее таким образом новое целое приобретает способность осуществлять новые функции, в чем и состоит цель образования иерархий. Иными словами, речь идет о ">закономерности эмердэюентности, ">или ">целостности ">(см. ">Закономерность целостности) ">и ее проявлении на каждом уровне иерархии.

">Иерархические представления помогают лучше понять и исследовать феномен сложности. Основными особенностями иерархической упорядоченности с позиции полезности их использования в качестве моделей системного анализа являются следующие:

">1. В силу закономерности ">коммуникативности, ">которая проявляется не только между выделенной системой и ее окружением, но и между уровнями иерархии исследуемой системы, каждый уровень иерархической упорядоченности имеет сложные взаимоотношения с вышестоящим и нижележащим уровнями.

">По метафорической формулировке, используемой Кёстлером, каждый уровень иерархии обладает свойством «двуликого Януса»: «лик», направленный в сторону нижележащего уровня, имеет характер автономного целого (системы), а «лик», направленный к узлу (вершине) вышестоящего уровня, проявляет свойства зависимой части (элемента вышестоящей системы, каковой является для него составляющая вышестоящего уровня, которой он подчинен).

">2. Важнейшая особенность иерархической упорядоченности как закономерности заключается в том, что закономерность целостности, т.е. качественные изменения свойств компонентов более высокого уровня по сравнению с объединяемыми компонентами нижележащего, проявляется в ней на каждом уровне иерархии.

">3. При использовании иерархических представлений как средства исследования систем с неопределенностью происходит как бы разбиение «большой» неопределенности на более «мелкие», лучше поддающиеся исследованию.

">4. В силу закономерности целостности одна и та же система может быть представлена разными иерархическими структурами. Это зависит от цели и лиц, формирующих структуру.

">В связи с изложенным на этапе структуризации системы (или ее цели) необходимо ставить задачу выбора варианта структуры для дальнейшего исследования или проектирования системы, для организации управления технологическим процессом, предприятием, проектом и т.д. Для того чтобы помочь в решении подобных задач, разрабатывают методики структуризации, методы оценки и сравнительного анализа структур. Вид иерархической структуры зависит также от применяемой методики.

">Благодаря рассмотренным особенностям иерархические представления могут использоваться в качестве средства для исследования систем и проблемных ситуаций с большой начальной неопределенностью.

">Закономерность аддитивности ">- закономерность теории систем, двойственная по отношению к ">закономерности целостности "> Свойство ">аддитивности "> (независимости, суммативности, обособленности) проявляется у элементов, как бы распавшихся на независимые элементы и выражается следующей формулой:

">Любая развивающаяся система находится, как правило, между состоянием абсолютной ">целостности ">и абсолютной ">аддитивности, ">и вьщеляемое состояние системы (ее «срез») можно охарактеризовать степенью проявления одного из этих свойств или тенденций к его нарастанию или уменьшению.

">

">3. Закономерности осуществимости систем

">Данную группу раскрывают следующие три закономерности:

  1. ">Эквифинальность потенциальной эффективности
  2. ">Закон «необходимого разнообразия У. Эшби»
  3. ">Потенциальная осуществимость Б. С. Флешмана

">Закономерность эквифинальности ">- одна из ">закономерностей функционирования и развития систем ">, характеризующая предельные возможности системы.

">Этот термин предложил Л. фон Берталанфи, который для открытой системы определил эквифинальность как «способность, в отличие от состояния равновесия в закрытых системах, полностью детерминированных начальными условиями, достигать не зависящего от времени состояния, которое не зависит от ее начальных условий и определяется исключительно параметрами системы»

">Потребность во введении понятия эквифинальности возникает, начиная с некоторого уровня сложности систем. Эта закономерность заставляет задуматься о предельных возможностях создаваемых предприятий, организационных систем управления отраслями, регионами, государством. Особый интерес представляют исследования возможных уровней существования социально-общественных систем, что важно учитывать при определении целей системы.

">На необходимость учитывать предельную осуществимость системы при ее создании впервые обратил внимание У.Р. Эшби и обосновал ">Закон «необходимого разнообразия».

">Основным следствием данной закономерности является следующий вывод: чтобы создать систему, способную справиться с решением проблемы, обладающей определенным, известным разнообразием, нужно, чтобы сама система имела еще большее разнообразие, чем разнообразие решаемой проблемы, или была способна создать в себе это разнообразие.

">Применительно к системам управления закон «необходимого разнообразия» может быть сформулирован следующим образом: разнообразие управляющей системы (системы управления) должно быть больше (или по крайней мере равно) разнообразию управляемого объекта ">.

">На основе «необходимого разнообразия У. Эшби», В.И. Терещенко предложил следующие пути совершенствования управления при усложнении производственных процессов:

  1. ">Увеличение разнообразия системы управления путем роста численности аппарата управления, повышения его квалификации, механизации, автоматизации управленческих работ.
  2. ">Уменьшение разнообразия системы управляемого объекта за счет установления правил поведения системы: унификация, стандартизация, типизация, введение поточного производства.
  3. ">Снижение уровня требований к управлению.
  4. ">Самоорганизация объектов управления.

">К середине 70-х гг. XX в. первые три пути были исчерпаны, и основное развитие получил четвертый путь на основе более широкой его трактовки - внедрение хозрасчета, самофинансирования,самоокупаемости и т.п.

">Закономерностью теории систем, объясняющей возможность осуществимости систем является ">закономерность потенциальной эффективности.

">Б.С. Флейшман связал сложность структуры системы со сложностью ее поведения, предложил количественные выражения предельных законов надежности, помехоустойчивости, управляемости и других качеств систем и показал, что на их основе можно получить количественные оценки осуществимости систем с позиции того или иного качества – предельные оценки жизнеспособности и потенциальной эффективности сложных систем.

">Эти оценки исследовались применительно к техническим и экологическим системам и пока еще мало применялись для социально-экономических систем. Но потребность в таких оценках на практике ощущается все более остро.

">Например, нужно определять: когда исчерпываются потенциальные возможности существующей организационной структуры предприятия и возникает необходимость в ее преобразовании, когда устаревают и требуют обновления производственные комплексы, оборудование и т.п.

">

">4. Закономерности развития систем

">Данная группа включает в себя закономерности самоорганизации и историчности.

">Закономерность историчности ">систем выражается в том, что любая система не может быть неизменной, что она не только возникает, функционирует, развивается, но и погибает, и каждый может привести примеры становления, расцвета, упадка (старения) и даже смерти (гибели) биологических и социальных систем.

">Однако для конкретных случаев развития организационных систем и сложных технических комплексов достаточно трудно определить эти периоды. Не всегда руководители организаций и конструкторы технических систем учитывают, что время является непременной характеристикой системы, что каждая система подчиняется ">закономерности историчности ">и что эта закономерность такая же объективная, как целостность, иерархическая упорядоченность и др. Поэтому в практике проектирования и управления на необходимость учета закономерности историчности начинают обращать все больше внимания. В частности, при разработке технических комплексов предлагают учитывать их «жизненные циклы», рекомендуют в процессе проектирования рассматривать не только этапы создания и обеспечения развития системы, но и вопрос о том, когда и как ее нужно уничтожить (возможно, предусмотрев «механизм» ее ликвидации или самоликвидации).

">Так, рекомендуют при создании технической документации, сопровождающей систему, включать в нее не только вопросы эксплуатации системы, но и ее срок жизни, ликвидацию. При регистрации предприятий также требуется, чтобы в уставе предприятия был предусмотрен этап его ликвидации.

">Однако закономерность историчности можно учитывать, не только пассивно фиксируя старение, но и использовать для предупреждения «смерти» системы, разрабатывая «механизмы» реконструкции, реорганизации системы для разработки или сохранения ее в новом качестве.

">Характерной особенностью развивающихся систем является их ">способность к самоорганизации ">, которая проявляется в самосогласованном функционировании системы за счет внутренних связей с внешней средой. Рассматривая развитие как процесс самоорганизации системы, выделим в нем две основные фазы: адаптацию, или эволюционное развитие и отбор. Самоорганизующиеся системы обладают механизмом непрерывной приспособляемости (адаптации) к меняющимся внутренним и внешним условиям, непрерывного совершенствования поведения с учетом прошлого опыта. При исследовании процессов самоорганизации будем исходить из предположения, что в развивающихся системах структура и функция тесно взаимосвязаны. Система преобразует свою структуру для того, чтобы выполнить заданные функции в условиях меняющейся внешней среды. ">

">

">5. Закономерности целеобразования

">К данной группе относятся ">закономерности формулирования ">целей ">в открытых системах с активными элементами.

">Основными закономерностями целеобразования являются следующие.

">1. Зависимость представления о цели и формулировки цели от стадии познания объекта (процесса) и от времени. ">При формулировании и пересмотре цели коллектив, выполняющий эту работу, должен определить, в каком смысле на данном этапе рассмотрения объекта и развития наших представлений о нем употребляется понятие ">цели ">, к какой точке условной шкалы «идеальные устремления в будущее - реальный конечный результат деятельности» ближе принимаемая формулировка цели.

">По мере углубления исследований, познания объекта цель может сдвигаться в одну или другую сторону на шкале, а соответственно должна изменяться и ее формулировка.

">2. Зависимость цели от внешних и внутренних факторов. ">При анализе причин возникновения и формулирования цели нужно учитывать, что на нее влияют как внешние по отношению к системе факторы, так и внутренние факторы.

">Цели могут возникать на основе взаимодействия противоречий (или, напротив, коалиций) как между внешними и внутренними факторами, так и между внутренними факторами, уже существующими и вновь возникающими в целостности, находящейся в постоянном самодвижении.

">Эта закономерность характеризует очень важное отличие ">открытых систем ">(см.), развивающихся систем с активными элементами от технических систем, отображаемых обычно замкнутыми, или ">закрытыми ">моделями. В открытых, развивающихся системах цели не задаются извне, а формируются внутри системы на основе закономерности целеобразования.

">3. Возможность (и необходимость) сведения задачи формулирования обобщающей (общей, глобальной) цели к задаче ее структуризации.

">4. Закономерности формирования структур целей:

  1. ">зависимость способа представления цели от стадии познания объекта;

">Цели могут представляться в форме различных ">структур: сетевых, иерархических ">, ">древовидных, со «слабыми связями», ">в виде ">«страт» ">и ">«эшелонов», "> в ">матричной ">(табличной) форме и др..

">На начальных этапах моделирования системы, как правило, удобнее применять декомпозицию в пространстве, предпочтительнее - древовидные иерархические структуры.

  1. ">проявление в структуре целей закономерности целостности;

">В иерархической структуре закономерность целостности, или эмерджентности проявляется на любом уровне иерархии.

  1. ">закономерности формирования иерархических структур целей
  2. ">закономерности формирования структур целей.

">

">7. Список использованных источников

  1. ">Волкова В.Н. Основы теории систем и системного анализа, 2009.
  2. ">В.Н. Волкова, А.А. Денисов. - СПб.: Изд-во СПбГТУ, 2007.
  3. ">Волкова Н.В. Теория систем и системный анализ в управлении организациями: ТЗЗ Справочник: Учеб. пособие / Под ред. В.Н. Волковой и А.А. Емельянова.- М.: Финансы и статистика, 2006.
    17. тема принципов и норм регулирующих отношения властного порядка между государствами и другими субъектами ме.html
    18. климатических демографических социальных экономических в конечном итоге производственных- факторы живог
    19. Лабораторная работа 2 Цель работы- изучение способов представления числовых данных в микроконтроллера
    20. Органы полового размножения мхов антеридии и архегонии развиваются на- а спорофите б мужском и женско

    Материалы собраны группой SamZan и находятся в свободном доступе

Классификацией называется распределение некоторой совокупности объектов на классы по наиболее существенным признакам .

Признак или их совокупность , по которым объекты объединяются в классы, являются основанием классификации.

Класс – это совокупность объектов , обладающих некоторыми признаками общности .

Системы разделяются на классы по различным признакам и в зависимости от решаемой задачи можно выбирать разные принципы классификации.

Взаимодействие разных классов систем чрезвычайно сложно и требует специального исследования. Каждый класс систем подразделяется на различные подклассы, находящиеся в определенной иерархии друг к другу.

Классификации всегда относительны . Цель любой классификации систем – ограничить выбор подходов к отображению системы, сопоставить выделенным классам приемы и методы СА, дать рекомендации по выбору методов для соответствующего класса систем. При этом система может быть одновременно охарактеризована несколькими признаками , что позволяет ей найти место одновременно в разных классификациях .

Это может быть полезным при выборе методов моделирования систем. Ниже приводится классификация систем по следующим классификационным признакам.

1. По природе элементов системы делятся на реальные (материальные) и абстрактные .

Реальными (физическими) системами являются объекты, состоящие из материальных элементов. Реальные системы мы способны воспринимать – это механические, электрические, электронные, биологические, социальные и другие подклассы систем и их комбинации.

Абстрактные (идеальные) системы составляют элементы, не имеющие прямых аналогов в реальном мире . Такие системы есть продукт мышления человека , т.е. они образуются в результате творческой деятельности человека .

Пример: гипотезы, различные теории, планы, идеи, системы уравнений.

Однако, абстрактные системы , как и реальные, оказывают существенное влияние на нашу действительность.

Пример: система знаний, без которой действительность невозможна. Абстрактные знания на наших глазах могут превратиться в реальный объект (производим ПК, строим дома). Реальная система может превратиться в абстракцию (сожгли письмо – и оно осталось в наших воспоминаниях). Абстракциями являются информация, вакуум, энергия.

Значение абстрактных систем трудно переоценить.

2. В зависимости от происхождения выделяют естественные (природные) и искусственные системы (но это все материальные)

Естественные системы совокупность объектов природы (солнечная система, живой организм, почва, климат, ветер, течение и т.д.) возникли без вмешательства человека . Считают, что появление новой естественной системы – большая редкость.

Искусственные системы – это совокупность социально-экономических или технических объектов . Возникли как результат созидательности человека , количество их со временем увеличивается.

Искусственные системы отличаются от природных наличием определенных целей функционирования (т.е. назначением) и наличием управления .

Примеры: жилые дома, спортивные комплексы и т.п.

3. По длительности существования системы делятся на постоянные и временные .

С точки зрения диалектики все существующие системы временные .

Постоянные – это все естественные системы , а также искусственные, которые сохраняют в процессе заданного времени функционирования свои существенные свойства, определяемые предназначением этих систем.

4. По степени связи с внешней средой системы делятся на закрытые (замкнутые) и открытые.

Система является замкнутой , если у нее нет окружающей среды , т.е. внешних контактирующих с ней систем.

К замкнутым относятся и те системы, на которые внешние системы не оказывают существенного влияния. Замкнутые системы не обмениваются с окружающей средой веществом, но обмениваются энергией. Пример замкнутой системы – часовой механизм, локальная сеть для обработки конфиденциальной информации, космические объекты «черные дыры», натуральное хозяйство.

Замкнутые системы не должны, строго говоря, иметь не только входа, но и выхода. Все реакции таких систем однозначно объясняются изменением их состояний.

Открытой называется система, если существуют другие, связанные с ней системы, которые оказывают на нее воздействие и на которые она тоже влияет. Т.е. открытая система отличается наличием взаимодействия с внешней средой . Такая система обменивается с окружающей средой энергией и веществом (массой), и информацией.

Различие между закрытыми и открытыми системами является важным моментом в Общей Теории Систем, т.к. всякая попытка рассмотрения открытых систем как замкнутых, когда внешняя среда не принимается во внимание, таит в себе большую опасность, вплоть до катастрофической и эту опасность необходимо полностью осознать. Пример: высыхания Арала, экологическая обстановка вокруг о. Байкал, появление озоновых дыр.

Закрытых систем в природе практически не существует. Все живые системы – открытые системы. Неживые системы являются относительно замкнутыми.

Понятие открытости систем конкретизируется в каждой предметной области .

Так, в области информатики открытые информационные системы – это программно-аппаратные комплексы, которым присущи следующие свойства:

а) совместимость, т.е. возможность взаимодействовать с другими комплексами на основе развитых интерфейсов для обмена данными с прикладными задачами в других системах;

б) переносимость (мобильность) – ПО м.б. легко перенесено на различные аппаратные платформы и в различные операционные среды;

в) наращивание возможностей – это включение новых программных и технических средств, не предусмотренных в начальном варианте;

5. По характеру поведения системы делятся на системы с управлением и без управления.

С управлением – это системы, в которых реализуется процесс целеполагания и целеосуществления (обычно это искусственные системы).

Без управления – это, например, солнечная система, где траектория движения планет определяется законами механики.

6. По обладанию биологическими функциями – на живые и неживые системы.

Живые обладают биологическими функциями (рождение, смерть, воспроизводство). Иногда понятие «рождение», «смерть» связывают с неживыми системами при описании процессов, которые как бы похожи на жизненные, но не характеризуют жизнь в ее биологическом смысле (есть понятие жизненный цикл системы).

Все абстрактные системы (наука физика, идеи) являются неживыми , а реальные системы (клетки, животные, человек. растения) могут быть живыми и неживыми (ПК, ЭИС – в них существует жизненный цикл).

7. В зависимости от степени изменчивости свойств системы делятся на статические (при исследовании их можно пренебречь изменениями во времени характеристик их существенных свойств) и динамические (деление их на дискретные и непрерывные связано с выбором мат. аппарата моделирования).

Статические – это системы с одним состоянием (кристаллы).

Динамические – имеют множество возможных состояний , которые могут меняться как непрерывно (для анализа обычно применяется теория обыкновенных дифференциальных уравнений и уравнений в частных производных (переключение скорости в автомобиле)), так и дискретно. Пример: любое техническое устройство (ЭВМ, автобус и т.п.) может работать, быть на ремонте, на техобслуживании, т.е. иметь различные состояния. Для анализа таких систем используют такие математические модели, как цепи Маркова, системы массового обслуживания, сети Петри.

8. В зависимости от степени участия человека в реализации управляющих воздействий системы делятся на технические (организационно – экономические – функционируют без участия человека, например, системы автоматического управления - САУ), человеко-машинные (эргатические – функционируют с участием человека, то есть человек сопряжен с техническими устройствами, но окончательное решение принимает ЛПР, средства же автоматизации помогают ему обосновать правильность этого решения, например, АСУ, ЭИС), организационные (это социальные системы, например, общество в целом, группы, коллектив людей).

9. В зависимости от степени сложности все системы делятся на простые , сложные и большие . Такое деление подчеркивает, что в СА рассматриваются не любые, а именно сложные системы большого масштаба . Хотя понятие “большая” далеко не всегда связанно именно с размерами системы. До сих пор нет общепризнанной границы, разделяющей простые, большие и сложные системы.

При таком делении обычно выделяют структурную , функциональную (вычислительную) сложность и наличие разных по типу связей между элементами системы.

По этому признаку отличают сложные системы от больших систем , которые представляют совокупность однородных элементов, объединенных связью только одного типа .

На искусственные и естественные (природные) делятся сложные системы .

Простые системы с достаточной сложностью точности могут быть описаны известными математическими соотношениями . Их особенности в том , что каждое свойство (температура, давление) таких систем можно исследовать в отдельности в условиях классического лабораторного эксперимента, а затем описать методами традиционных технических дисциплин (радиотехника, электроника, прикладная механика – свойства: зависимость давления газа от температуры, сопротивление от емкости и т.д.)

Примеры простых систем : элементы электронных схем, электрических, отдельные детали.

Сложные системы состоят из большого числа взаимосвязанных и взаимодействующих элементов , каждый из которых может быть представлен в виде системы (подсистемы).

Сложные системы характеризуются многообразием природы элементов , связей между ними , разнородностью структуры (далее будет дано подробно это понятие) и многомерностью , т.е. большим числом составленных элементов.

Сложные системы обладают следующими свойствами :

1) свойством робастности , т.е. способностью сохранять частичную работоспособность (эффективность) при отказе отдельных элементов или подсистем;

2) свойством эмерджентности (целостности , интегративности), которое отсутствует у любой из составляющих ее частей (как уже говорилось). Т.е. отдельное рассмотрение каждого элемента не дает полного представления о сложной системе в целом . Эмерджентность может достигаться за счет обратных связей , играющих огромную (важнейшую) роль в управлении сложной системой .

Считается, что структурная сложность системы должна быть пропорциональна объему информации , необходимой для ее описания (для снятия неопределенности).

К сложной системе можно отнести систему ,обладающую , по крайней мере, одним из перечисленных признаков :

1) систему можно разбить на подсистемы и изучать каждую из них отдельно ;

2) система функционирует в условиях существенной неопределенности и воздействия среды на нее, обуславливает случайный характер изменения ее показателей;

3) система осуществляет целенаправленный выбор своего поведения.

Примеры сложных систем : живые организмы (человек), ПК, АСУ,ЭИС.

Большие системы (не по габаритам) – это сложные пространственно-временные системы, в которых подсистемы (и их составные части) относятся к категориям сложных.

Дополнительные особенности, которые характеризуют большую сложную систему:

1) большие размеры (не по габариту, а по количеству элементов);

2) сложная иерархическая структура;

3) циркуляция в системе больших информационных, энергетических и материальных потоков;

4) высокий уровень неопределенности в описании системы.

Примеры больших сложных систем : системы связи, АСУ, отрасли промышленности, система бизнеса, воинские части.

НО! Большие системы не всегда могут быть сложными (пример: трубопровод, газопровод, состоящий из большого числа отдельных звеньев – труб) (только один тип связи).

Сложные системы не всегда будут большими по габаритам (например, ПК, микропроцессор).

Сложные системы характеризуются выполняемыми процессами (функциями), структурой и поведением во времени.

Наш соотечественник математик Г.Н. Поваров делит все системы в зависимости от числа входящих в них элементов на 4 группы:

1) малые системы (10 – 10 3 элементов);

2) сложные системы (10 3 – 10 7 элементов) - АТС, транспортная система большого города;

3) ультрасложные системы (10 7 – 10 30 элементов) - организмы высших животных и человека, социальные организации;

4) суперсистемы (10 30 – 10 200 элементов) - звездная вселенная.

10. По виду научного направления , используемого для моделирования , системы делятся на математические, химические, физические и др.

Самой сложной системой на сегодняшний день считается человеческий мозг.

11. Целенаправленные, целеустремленные системы – т.е. направленные на достижение цели .

Не всегда при изучении систем можно применять понятие цель . Но при изучении экономических , организационных объектов важно выделить класс целенаправленных или целеустремленных систем (в это понятие вкладывается способность системы преследовать одну и ту же цель, изменяя свое поведение при изменении внешних условий, то есть способность проявлять адаптивность, сохраняя цель, например, крылатые ракеты летят очень низко, повторяя рельеф поверхности).

В этом классе выделяют системы, в которых цели задают извне (обычно это имеет место в закрытых (технических) системах) и системы, в которых цели формируются внутри системы (характерно для открытых самоорганизующихся систем). Для таких систем разработаны методики, помогающие формировать и анализировать структуру целей.

Существует такое понятие, как закономерности целеобразования.

12. По степени организованности системы делятся на хорошо организованные, плохо организованные (или диффузные) и самоорганизующиеся.

Отличие этой классификации от других в том, что в ней классы можно достаточно четко разграничить с помощью характерных для каждого класса признаков, которые позволяют поставить в соответствие разным классам МФПС и способы представления целей в них.

Эти выделенные классы практически следует рассматривать как подходы к отображению объекта или решаемой задачи, которые могут выбираться в зависимости от стадии познания объекта и возможности получения информации о нем.

Таким образом, определив класс системы, можно дать рекомендации по выбору метода, который позволяет более адекватно ее отобразить .

Хорошо организованные системы (ХОС)

– это системы, в которых исследователю удается определить все элементы системы и их взаимосвязи между собой и с целями системы в виде детерминированных (аналитических, графических) зависимостей.

На представление этим классом систем основано большинство моделей физических процессов, технических систем. Хотя для сложных объектов формирование таких моделей существенно зависит от ЛПР (например, атом может быть представлен в виде планетарной модели, состоящей из ядра и электронов, что упрощает реальную картину, но достаточно для понимания принципов взаимодействия элементов этой системы).

Работу сложного механизма можно отобразить упрощенной схемой или системой уравнений.

Особенность ХОС:

Проблемная ситуация может быть описана в виде выражений, связывающих цель со средствами, то есть в виде критерия функционирования, целевой функции, которые могут быть представлены в виде уравнения, формулы, системы уравнений или сложных математических моделей, включающих и уравнения, и неравенства, и т.п.

Представление объекта в виде ХОС применяется в тех случаях, когда может быть представлено детерминированное описание и экспериментально доказана адекватность модели реальному объекту или процессу.

Применять класс ХОС для представления сложных многокомпонентных объектов или многокритериальных задач, решаемых при разработке технических комплексов, совершенствования управления предприятиями и организациями не рекомендуется, так как при этом требуется недопустимо большие затраты времени на формирование модели и невозможно доказать адекватность модели .

Поэтому при представлении сложных объектов , проблем, особенно в социально-экономических системах, на начальных этапах исследования их отображают классом ПОС (диффузных) и самоорганизующихся систем.

Плохо Организованная Система (диффузная)

– при представлении объекта в виде этой системы не ставится задача определить все учитываемые элементы(компоненты) и их связи с целями системы . В этом случае на основе выборочного исследования получают характеристики или закономерности (статистические , экономические и т.п.) и распространяют эти закономерности на поведение системы в целом . При этом делаются некоторые оговорки. Например, при получении статистических закономерностей их распространяют на поведение системы с какой-то вероятностью, которая оценивается с помощью приемов математической статистики (с помощью критериев и проверок гипотез).

Пример диффузной системы: газ. Его свойства не определяют путем точного описания поведения каждой молекулы, а характеризуют газ макропараметрами (давление, проницаемость и т.д.). Основываясь на этих параметрах, разрабатывают приборы, устройства, которые используют эти свойства, но при этом не исследуется поведение каждой отдельно взятой молекулы.

Отображение объектов в виде диффузных систем находит широкое применение при определении численности штатов в обслуживающих учреждениях (ремонтных бригадах, цехах), при определении пропускной способности (автозаправки, кассы, телеграфные станции, железные дороги, аэропорт) систем разного рода (обычно в этих задачах применяются методы теории массового обслуживания), при исследовании документальных потоков информации.

Самоорганизующиеся (или развивающиеся) системы (экономические).

В них выделяют подклассы:

Саморегулирующиеся;

Самообучающиеся;

Самонастраивающиеся.

Отображение объектов в виде самоорганизующихся систем позволяет исследовать наименее изученные объекты, процессы с большой неопределенностью на начальном этапе постановки задачи.

Этот класс систем характеризуется рядом признаков, приближающих их к реальным развивающимся объектам(экономическим и социальным). Так же они обладают признаками, характерными для диффузных систем: случайностью поведения и непредсказуемостью, нестабильностью отдельных параметров, способностью адаптироваться к изменяющимся условиям среды; менять структуру, сохраняя свойствацелостности ; формировать возможные варианты поведения и выбирать из них лучший. В то же время все это вызывает неопределенность, затрудняет управление. Модели таких систем должны позволять отображать выше рассмотренные их свойства. Но при формировании таких моделей меняется привычное представление о моделях, характерное для математического моделирования, для прикладной математики. Изменяется представление и о доказательстве адекватности таких моделей (под адекватностью модели понимают ее соответствие моделируемому объекту или процессу).

Основная особенность этого класса систем – принципиальная ограниченность их формализованного описания . Эта особенность приводит к необходимости сочетания формализованных методов (МФПС) и методов качественного анализа (МАИС) и положена в основу большинства моделей и методик СА.

Основная конструктивная идея моделирования при отображении объекта классом самоорганизующихся систем следующая:

а) на начальном этапе разрабатывается знаковая система, с помощью которой фиксируют известные на данный момент элементы, компоненты системы и их связи;

б) по мере накопления знаний об объекте, процессе с помощью правил декомпозиции, структуризации получают новые, не известные ранее взаимоотношения и зависимости, которые либо подсказывают последующие шаги на пути подготовки решения, либо служат основой принимаемых решений;

в) по мере уточнения представлений об объекте, проблемной ситуации в модели системы может осуществляться постепенный переход от методов дискретной математики (теоретико-множественные, логические, лингвистические, семиотические, графические методы) к более формализованным методам – статистическим, аналитическим.

Но для класса самоорганизующихся (развивающихся) систем недостаточно знание только методов МФПС. На разных этапах моделирования могут помочь методы МАИС (метод мозговой атаки, дерева сценариев, целей, дерева решений, Делфи, экспертные методы и т.д.).

Своим названием этот класс систем обязан тому факту, что в системе как бы включен “механизм” постепенного уточнения, “развития” модели системы.

13. По виду отображаемого объекта системы делятся на технические , биологические , экономические, организационные, социальные и т.д.

14. С точки зрения принятия решений системы делятся на технические, биологические, социальные.

1. Техническая система включает оборудование, станки, компьютеры и др. работоспособные изделия, имеющие инструкции для пользователя. Методика расчета мачтовых опор для ЛЭП, решение задачи по математике, порядок включения компьютера и работа с ним – такие решения носят формализованный характер и выполняются в строго определенном порядке. Т.е. набор решений в технической системе ограничен и последствия решений обычно предопределены. Качество принятого и выполненного решения зависят от профессионализма ЛПР.

2. Биологическая система включает флору и фауну планеты, в том числе относительно замкнутые биологические подсистемы: человеческий организм, муравейник, термитник и др. эта система обладает большим разнообразием функционирования, чем техническая.

Набор решений в этой системе так же ограничен из-за медленного эволюционного развития животного и растительного мира. НО , последствия решений в биологических системах часто оказываются непредсказуемыми: решение агронома о применении тех или иных химикатов в качестве удобрений, решение врача, связанные с диагностикой новых болезней пациентов, решение применять в баллонах с распылителем газа фреона, решение спускать отходы производства в реку…

В этих системах необходима разработка нескольких альтернативных вариантов решений и выбор лучшего по каким-либо признакам. Специалист, принимающий решение, должен правильно ответить на вопрос «Что будет, если..»

Качество принятого решения зависит от профессионализма ЛПР, определяющего способностью находить надежную информацию, использовать соответствующие методы решения и выбирать лучшее из альтернативных.

3. Социальная (общественная) система характеризуется наличием человека в совокупности взаимосвязанных элементов: семья, производственный коллектив, водитель управляющий автомобилем; неформальная организация, даже 1 человек (сам по себе).

По разнообразию возникающих проблем эти системы существенно опережают биологические.

Набор решений в социальной системе характеризуется большим разнообразием в средствах и методах реализации.

Социальная система может включать биологическую и техническую, а биологическая – техническую.

Наш первый пример - это система, в которой нет поступлений и есть два поглощающих (или конечных) состояния. Он был выбран с целью проиллюстрировать, что хорошая стохастическая модель имеет ряд достоинств по сравнению с приемами, которые иногда использовались для решения подобных задач. Это довольно упрощенный пример описания полной неопределенности, которая возникает после лечения заболевания раком. Пациент после лечения может по прошествии некоторого времени находиться в одном из множества состояний. Эти состояния могут классифицироваться, например, так: «здоров», «заболел вновь» (рецидив болезни), «мертв»; точность классификации, очевидно, зависит от целей исследования и от имеющихся возможностей по получению данных. Стохастическая модель описания жизни пациентов после лечения от заболевания раком была построена Фикс и Нейманом (1951) и обсуждалась в более общем виде Залем (1955). Фикс и Нейман применили эту модель для оценки эффективности лечения. Далее мы опишем, как они это делали. Отметим, кстати, что указанная модель достаточно общего вида, и у нее могут быть также другие приложения.

В модели Фикс и Неймана введены четыре состояния. Описание состояний и возможные переходы показаны на рис. 5.1. Авторы понимали

трудность определения состояния «выздоровел» и отметили, что было бы желательно некоторые из состояний разделить. Например, пациенты, находящиеся в состоянии могут быть разделены на две группы: те, кто умер по естественным (ненасильственным) причинам, и те, судьбу которых проследить не удалось.

Можно также предположить, что необходимо предусмотреть возможность перехода из состояния в состояние Мы не будем отклоняться в сторону, обсуждая эти детали, так как этот пример приведен прежде всего для того, чтобы проиллюстрировать применение теории марковских процессов к описанию жизни людей.

Первая задача в данном приложении - оценить интенсивности переходов. Для этого использовались данные о выживших, при этом сами данные были лишены недостатков, присущих в общем случае такого рода измерениям. Один из способов измерения - определение доли выживших в году. Это относительное число оставшихся в живых, по крайней мере, в течение Т лет от всех прошедших курс лечения. Такие измерения были бы удовлетворительными, если бы рак был единственной причиной смерти и если бы все больные наблюдались в течение полных Т лет. Практически так никогда не бывает, и доля выживших в году может привести к ошибочным выводам. Чтобы убедиться в неточности такого утверждения, заметим только, что измеренная интенсивность (доля) будет больше, так как следует измерить также долю тех, кто выбыл из поля зрения или умер по другим причинам, т. е. относительно большее число людей осталось бы в живых до предельного срока, если бы им суждено было умереть только от заболевания раком. Таким образом, наблюдаемые значения интенсивностей перехода зависят не только от опасности умереть от рака, но и от других причин, не имеющих отношения к заболеванию раком. Если сопоставлять по грубым интенсивностям переходов группу тех, кто прошел курс лечения, и контрольную группу, то сравнение не имело бы смысла, если бы эти две группы подвергались различным опасностям по различным причинам. Чтобы преодолеть эти естественные трудности, обычно вычисляют чистые интенсивности, которые учитывают

такие различия. Цель приведенного примера - показать, что стохастическая модель дает лучшую основу для оценки чистых интенсивностей, чем метод, используемый в страховом деле.

Интенсивности переходов между состояниями в модели Фикс и Неймана полагали постоянными величинами. Однако хорошо известно, что естественная смертность людей - непостоянная величина, и после периода младенчества она увеличивается с возрастом. В средний период жизни она не очень быстро увеличивается, и если период времени Т достаточно короткий, то предположение о постоянстве будет вполне адекватно действительности. Во всяком случае, мы покажем, что можно собирать данные таким образом, чтобы можно было проверять эти предположения. Интенсивность смерти после лечения рака разных видов широко изучается. Время жизни после лечения, как было выяснено, имеет асимметричный характер, Боаг (1949), например, сделал предположение, что оно часто может быть адекватно описано с помощью асимметричного логнормального распределения. В этом случае логнормальное распределение нелегко отличить от экспоненциального, которое появляется при постоянной интенсивности смерти. Таким образом, предположение, что интенсивность смерти от рака является постоянной величиной, вероятно, достаточно реалистично. Непосредственно проанализировать факторы, влияющие на интенсивность переходов из состояния в (выздоровление) и из состояния не представляется возможным, но кажется правдоподобным предположение о постоянстве интенсивностей потерь по разным причинам, по крайней мере для интенсивностей выпадения пациентов из поля зрения.

В нашей модели мы предполагаем, что в нулевой момент времени в состоянии находится N людей, в других состояниях людей нет. Численности людей в четырех группах в последующие моменты времени Т будут случайными величинами, которые мы обозначим через - математическое ожидание случайной величины . Наблюдая эти случайные величины в один или несколько моментов времени, можно оценить интенсивности переходов. Затем, используя оценки, можно предсказать численности различных состояний в будущем. Наиболее важна возможность оценить эти численности, если смерть от заболевания раком будет единственной причиной.

Применение теории

Расширенная матрица в описываемом случае имеет вид

где Уравнение для нахождения собственных чисел матрицы есть или

Очевидно, что это уравнение имеет два нулевых корня; два оставшихся корня, которые мы обозначим следующие:

причем для расчета возьмем положительный знак, а для - отрицательный. Тогда, используя (4.24), получим

Следующий шаг - записать и решить однородные уравнения для коэффициентов. Для начала положим будет принимать значения 2, 3 и 4. Таким образом,

Приведем три группы уравнений для и 4:

Из уравнений немедленно следует, что и, следовательно, первые уравнения в каждой группе можно опустить. Начальные условия состоят в том, что в нулевой момент времени все индивидуумы системы находятся в состоянии Предположим далее, что Если то соответствующие значения могут быть найдены просто умножением на N результата, полученного при предположении, что . Тогда в добавление к записанным выше уравнениям имеем

Для решения этих уравнений проделаем следующие преобразования. Сложим правые и левые части уравнений (5.22) и, используя начальные условия, получим

Сделав аналогичные преобразования для (5.23), будем иметь

но это уравнение может быть получено через и си из уравнения (5.23), что дает

Затем можно совместно решить однородные уравнения (5.27) и (5.28), что позволяет записать:

и, следовательно,

Сделав подобные преобразования для (5.24) и (5.25), получаем

Остается определить две константы: Используя начальные условия, находим

(5.30)

Сейчас рассмотрим, как использовать эти результаты, чтобы сравнить интенсивности выживания. Когда величина может быть интерпретирована как вероятность находиться в состоянии - в момент времени Т. Таким образом, представляют собой соответственно грубые интенсивности смерти вследствие заболевания раком и по естественным причинам. Однако зависит также от интенсивности естественной смерти и, как мы указывали выше, это уменьшает ее величину как меру риска. На самом деле нам нужна чистая мера риска (чистая интенсивность смерти), из которой устранено влияние естественной смертности. Согласно подходу к задаче, используемому в страховом деле, чистая интенсивность смерти от рака определяется по формуле

Величина (5.32) должна давать среднее число смертей от заболевания раком на интервале (0, Т), если бы смертности по естественным причинам не было. Смысл уравнения (5.32) станет яснее, если его переписать:

Второе слагаемое в правой части уравнения (5.33) - оценка численности людей, которые умерли бы от рака в течение рассматриваемого периода, если не умерли бы по другим естественным причинам. Оно получено в предположении, что смерть от рака, вероятность которой равна одной второй, предшествует естественной смерти по другим причинам. Предлагаемая модель предоставляет другой метод для оценки чистых интенсивностей смерти от рака. Мы можем исключить влияние естественной смертности, положив Тогда чистая интенсивность записывается как

где нулевые индексы в означают, что положена равной нулю.

Применение этих результатов может быть проиллюстрировано численными примерами. Возьмем следующие значения интенсивностей переходов:

Подставляя эти величины в (5.20), для примера 1 находим:

а для примера 2:

Можно выявить одну особенность, показывающую несостоятельность метода определения интенсивности смерти, принятого в страховом деле, если рассмотреть предельное поведение (5.32) при Вместо того, чтобы стремиться к единице, как следовало бы ожидать от достаточно обоснованной меры, она стремится к значению, меньшему единицы в обоих примерах. Анализ (5.32) показывает, что этот результат всегда имеет место. Очевидно также, что в общем случае при достаточно большом Т. Некоторые численные значения содержатся в табл. 5.1.

Приведенный пример - хорошая иллюстрация использования стохастической модели для измерения социального явления. Он показывает также, что коррекция измерений с позиций «здравого смысла» может существенно обесценить проведенные измерения. Высказанные доводы предполагают, что модель адекватна описываемому явлению. Если в действительности интенсивности переходов не постоянны, то более простая статистическая оценка иногда предпочтительнее, потому

Таблица 5.1. Сравнение чистых интенсивностей смерти от рака, вычисленных с помощью метода, используемого в страховом деле, и с помощью стохастической модели

что она не зависит от распределения. Как будет показано, именно грубые методы эффективны при проверке адекватности модели.

При обсуждении модели предполагалось, что интенсивности переходов известны. На практике они не бывают известными, и их необходимо оценить по имеющимся данным. Общие методы оценивания упоминались в гл. 4, но для решения нашей задачи достаточно более простого метода Фикс и Неймана. В момент времени Т мы можем зафиксировать численности пациентов в начальный момент в каждом из четырех состояний. Эти численности могут рассматриваться как оценки для , которые в свою очередь получаются при неизвестных параметрах. В обсуждаемой модели метод позволяет получить четыре уравнения для оценки неизвестных параметров. К сожалению, эти уравнения не являются линейно независимыми, так как

где N - наблюдаемое число индивидуумов. Ситуация была бы еще хуже, если бы в матрице R были другие ненулевые интенсивности. Такие трудности можно преодолеть, исследуя состояния системы в нескольких точках оси времени. Другой метод - рассматривать некоторые другие характеристики системы, например, по предложению Фикс и Неймана, подсчитывать число пациентов, оставшихся в состоянии на интервале времени . Если материал наблюдений достаточно обширен, то можно не только оценить все параметры, но и проверить качество модели. Предельная структура может быть получена непосредственно, без проведения всех описанных вычислений, так как из (5.21) результат следует немедленно.

Из уравнений (5.30) и (5.31) получаем

Остальные предельные значения равны нулю. Таким образом, имеется простая зависимость от интенсивностей переходов. Вид этой зависимости может быть легко выявлен, если записать отношение этих величин в следующей форме:

где - отношение интенсивностей переходов из состояния «определен диагноз - заболевание раком», и - отношение интенсивностей переходов из состояния «здоров». Большая интенсивность потока выздоравливающих способствует увеличению доли тех пациентов, кто умирает по другим естественным причинам, но этому в некоторой степени будет противодействовать возможность и большей интенсивности потока рецидивов

Мы уже указывали, что модель первоначально была разработана для измерения эффективности лечения. Один из способов - рассчитать - чистую долю тех, кто умер бы от рака, при исключении влияния других причин. Фикс и Нейман приводят доводы в пользу того, что не единственная, но, видимо, наиболее подходящая мера для оценки выживания. Обсуждение этого вопроса выходит за рамки данной книги, но мы коснулись его потому, что величины будут полезны для построения других мер при дальнейших исследованиях. Например, Фикс и Нейман предполагают полезным рассчитывать среднюю длительность «нормальной» жизни в период так, как если бы рак был единственной причиной смерти. Поскольку - функция распределения длительности «нормальной» жизни при отсутствии других причин смерти, математическое ожидание может быть записано так:

Иерархическая кадровая система

Модели с непрерывным временем, описывающие иерархические системы, впервые были предложены Силом (1945) и Вайдой (1948). Хотя их модели немарковские, оба автора обсуждали некоторые особые случаи, которые совпадают с теми, что следуют из нашей общей теории. Рассмотрим систему, которая представлена диаграммой на рис. 5.2. Эта система имеет одно поглощающее состояние, обозначенное Продвижение возможно только на ближайшую градацию,

что изображена на схеме, а все вновь поступающие зачисляются на первую. Расширенная матрица интенсивностей переходов для описанной системы имеет вид

Простая треугольная структура позволяет нам получить точную формулу для собственных значений и коэффициентов которые есть в выражениях для определения переходных вероятностей

Отсюда мы тотчас же находим, что

Уравнения для определения коэффициентов с, полученные из (4.19), имеют вид

Начальные условия, представленные последними двумя уравнениями, следуют из того, что все вновь прибывшие начинают свою карьеру с градации 1 - низшей ступени служебной лестницы. Решение системы уравнений (5.40) дает

Представляют интерес только значения если в этом случае из (5.3) находим

Коэффициенты, полученные из (5.40), дают

и выражения для них можно подставить в (5.42). Подобные выражения могут быть найдены при соответствующих начальных условиях, но они же легко могут быть выведены из выражений для когда имеется простая иерархическая система Вновь поступивший, который начинает свою карьеру с ступени -уровневой системы, находится в том же состоянии, что и тот, который поступил на низшую (первую) ступень -уровневой системы. Заменяя на и переобозначая интенсивности переходов, найдем необходимые выражения. Ниже мы приведем пример. Очевидно, что верхний предел суммы в последнем члене выражения

Модель, которую мы описали, несколько более общего вида, чем марковская версия модели Вайды (1948). В последней предполагалось, что интенсивности поступлений и уходов постоянны, таким образом, результаты Вайды могут быть получены из наших, если положить скажем, для Мы имеем также ожидаемые численности ступеней для любого 7, а Вайда обсуждал только предельный случай.

Как мы указывали, по нескольким причинам требуется, чтобы все величины гц ) были различны. В случае, который мы сейчас обсудим, для поэтому равные Гц встречаются при равенстве интенсивностей уходов с различных ступеней. Случай, представляющий особый интерес, появляется тогда, когда для Это соответствует ситуации, в которой интенсивности продвижения и интенсивности уходов одни и те же для всех ступеней, кроме последней. Соответствующее изменение общей теории может быть получено при стремлении друг к другу собственных значений в выражении (5.43). Окончательное выражение для будет таким.

Урок 7. Что такое система

Тип урока: комбинированный.

Цель урока:

· Сформировать представление учащихся о системе

· Дать понятия: система, структура системы

Задачи урока:

    Закрепить навыки создания и редактирования документов в текстовом процессоре word.

Требования к освоению материала:

    Знать: система, структура, виды систем. Уметь: создавать документ, редактировать документ, вставлять формулы, приводить примеры систем, приводить подсистемы систем.

Развиваем:

· Внимательность.

· Самостоятельность.

· Умение решать задания ЕГЭ на определение количества информации.

План урока.

Организационный момент (2 мин). Новый материал (17 мин) Практическая работа (18 мин) Подведение итогов (1 мин). Д/З. записи в тетради (2 мин).

Ход урока

Организационный момент: учитель отмечает отсутствующих в классе.

Новый материал:

В жизни мы многократно сталкиваемся с понятием «система». Примеров можно привести достаточно много:

Периодическая система химических элементов; Система растений и животных; Система образования; Система транспорта; Система здравоохранения; Система счисления и др.

Так что же такое «система»?

Система
Любой объект окружающего мира можно рассматривать как систему.
.(Слайд 3)




Функция (цель, назначение) системы; Взаимодействие системы с окружающей средой; Состав системы; Структура системы; Системный эффект. Функция системы

Рассматривая примеры различных систем, следует разделить их. (Слайд 5)
Например, Солнечная система – естественная, а компьютер – искусственная система.
Для всякой искусственной системы можно определить цель ее создания человеком: автомобиль – перевозить людей и грузы, компьютер – работает с информацией, завод – производить продукцию.

Учащиеся сами приводят примеры систем и указывают их функции.

Состав системы.

В состав крупной системы может входить другая система. Первую называют надсистемой, вторую – подсистемой. Имя надсистемы на схеме состава всегда располагают выше имен всех ее подсистем. В этом случае говорят о многоуровневой структуре системы, в которой один и тот же компонент может одновременно быть надсистемой и подсистемой. (Слайд 6) Например, головной мозг – подсистема нервной системы птицы и надсистема, в состав которой входят передний мозг, средний мозг и т. д.
Во многих случаях связь между объектами очевидна, но не сразу понятно, в составе какой надсистемы их нужно рассматривать.(Дерево может погибнуть от насекомых-вредителей, если уменьшится численность птиц. Насекомые, птицы, деревья – компоненты системы «Парк» или «Лес».
Любой реальный объект бесконечно сложен .

Структура системы.

Всякая система определяется не только составом частей, но также порядком и способом объединения этих частей в единое целое.
Структура – это совокупность связей между элементами системы. Структура – внутренняя организация системы.
Например: Все детские конструкторы включают в себя множество типовых деталей, из которых можно собрать различные фигуры. Эти фигуры будут отличаться порядком соединения деталей, т. е. структурой.
Всякая система обладает определенным составом и структурой. Свойства системы зависят от того и от другого. Даже при одинаковом составе системы с разной структурой обладают разными свойствами, могут иметь разное назначение.

Системный эффект.

Главное свойство любой системы – возникновение системного эффекта . Заключается оно в том, что при объединении элементов в систему у системы появляются новые качества, которыми не обладал ни один из элементов в отдельности.
В качестве примера системы рассмотрим самолет. Главное его свойство – способность к полету. Ни одна из составляющих его частей в отдельности (крылья, двигатели и т. д.) этим свойством не обладает, а собранные вместе строго определенным способом, они такую возможность обеспечивают. Вместе с тем, если убрать из системы «самолет» какой-нибудь элемент (например, крыло), то не только это крыло, но и весь самолет потеряет способность летать.

Вопросы и задания . (Задаются в конце этого, или начале следующего урока).

Что такое система? Приведите примеры материальных, нематериальных и смешанных систем. В чем суть системного эффекта? Приведите пример. Назовите компоненты Солнечной системы. Какие из них можно рассматривать как системы? В состав какой системы рыбы входит подсистема «жабры»? Для каких компонентов она является надсистемой? Выделите подсистемы в следующих объектах, рассматривая в качестве систем: Автомобиль; Компьютер; Школа;

Практическая работа: работа в текстовом процессоре Word.

Подведение итогов: стр.

Домашнее задание: записи в тетради, стр.

Лабораторная работа №1

«Создание и редактирование документа. Вставка формул»

На оценку «3»: набрать и отформатировать текст, вставить любую формулу.

На оценку «4»: набрать и отформатировать текст, вставить 1 и 2 формулы

На оценку «5»: набрать и отформатировать текст, вставить 1, 2, 3 и 4 формулы

«Что такое система?»

Система – это целое, состоящее из частей, взаимосвязанных между собой.

Части, образующие систему, называются ее элементами.
Различают материальные, нематериальные и смешанные системы .

Примеры материальных систем: дерево, здание, человек, планета Земля, Солнечная система.

Примеры нематериальных систем: человеческий язык, математика.

Пример смешанных систем – школа, университет. Она включает в себя как материальные части (школьное здание, оборудование, тетради и пр.), так и нематериальные (учебные планы, программы, расписание уроков).
Каждая система обладает следующими свойствами:

Функция (цель, назначение) системы; Взаимодействие системы с окружающей средой; Состав системы; Структура системы; Системный эффект.

Функция системы:

· Рассматривая примеры различных систем, следует разделить их.
Например, Солнечная система – естественная, а компьютер – искусственная система. Для всякой искусственной системы можно определить цель ее создания человеком: автомобиль – перевозить людей и грузы, компьютер – работает с информацией, завод – производить продукцию.

Состав системы

· В состав крупной системы может входить другая система. Первую называют надсистемой, вторую – подсистемой. Имя надсистемы на схеме состава всегда располагают выше имен всех ее подсистем. В этом случае говорят о многоуровневой структуре системы, в которой один и тот же компонент может одновременно быть надсистемой и подсистемой. Например, головной мозг – подсистема нервной системы птицы и надсистема, в состав которой входят передний мозг, средний мозг и т. д. Во многих случаях связь между объектами очевидна, но не сразу понятно, в составе какой надсистемы их нужно рассматривать.

Выбор редакции
Архимандрит Мелхиседек (Артюхин).Беседы с батюшкой «Где просто, там ангелов со сто…» В ноябре 1987 г. Оптина Пустынь была возвращена...

В а н я (в кучерском армячке). Папаша! кто строил эту дорогу? П а п а ш а (в пальто на красной подкладке), Граф Петр Андреевич...

Текст работы размещён без изображений и формул. Полная версия работы доступна во вкладке "Файлы работы" в формате PDF Введение Откуда...

С лужение человека Богу, законоположенное Богом, ясно и просто. Но мы сделались так сложны и лукавы, так чужды духовного разума, что...
ПРАВИТЕЛЬСТВО РОССИЙСКОЙ ФЕДЕРАЦИИО СТАВКАХ ПЛАТЫ ЗА НЕГАТИВНОЕ ВОЗДЕЙСТВИЕ НА ОКРУЖАЮЩУЮ СРЕДУ И ДОПОЛНИТЕЛЬНЫХ КОЭФФИЦИЕНТАХ В...
В течение всего 2018 года по сложившейся традиции в налоговое законодательство (в т.ч. - в Налоговый кодекс РФ) внесли кучу изменений,...
Форма 6-НДФЛ содержит обобщенную информацию о налоге, уплаченном с доходов работников, и подается ежеквартально. В ней подлежат...
Косвенные расходы. Учет и распределение при расчете налога на прибыль Косвенные расходы, что к ним относится: учет и распределение...
В 2017 году нужно озаботиться заполнением отчета о движении денежных средств за 2016 год. Кто должен сдавать отчет? Каково назначение...