Презентация на тему: Общее строение клетки. Презентация урока на тему: Строение клетки — Гипермаркет знаний Клетка строение клетки биология презентация


Слайд 2

  • Цитология - наука о клетке. Наука о клетке называется цитологией (греч. “цитос" - клетка, “логос" - наука). Предмет цитологии - клетки многоклеточных животных и растений, а также одноклеточных организмов, к числу которых относятся бактерии, простейшие и одноклеточные водоросли.
  • Цитология изучает строение и химический состав клеток, функции внутриклеточных структур, функции клеток в организме животных и растений, размножение и развитие клеток, приспособления клеток к условиям окружающей среды.
  • Слайд 3

    Слайд 4

    Разнообразие форм клеток эукариот - растений и животных

    Слайд 5

    Строение клетки

    Клетки всех одноклеточных и многоклеточных организмов сходны(гомологичны) по своему строению, химическому составу, основным проявлениям жизнедеятельности и обмену веществ, размножение клеток происходит путем их деления, и каждая новая клетка образуется в результате деления исходной (материнской) клетки, в сложных многоклеточных организмах клетки специализированы по выполняемой ими функции и образуют ткани; из тканей состоят органы, которые тесно связаны между собой и подчинены нервным и гуморальным системам регуляции.

    Слайд 6

    Заполняем таблицу:«Строение и функции органоидов клетки»

  • Слайд 7

    Поверхностный аппарат клеток

    • Для того, чтобы поддерживать в себе необходимую концентрацию веществ, клетка должна быть физически отделена от своего окружения. Вместе с тем, жизнедеятельность организма предполагает интенсивный обмен веществ между клетками. Роль барьера между клетками играет поверхностный аппарат клеток, который состоит из:
    • Плазматической мембраны;
    • Надмембранного комплекса:

    У животных – гликокаликс,

    У растений – клеточная стенка

    Слайд 8

    Особенности строения: биологической мембраны

    • Двойной слой липидов с белками.
    • Типы белков: пронизывающие, погружённые, поверхностные.
    • К молекулам белков и липидом могут присоединяться полисахариды, выполняющие роль рецепторов.
    • Обладает избирательной проницаемостью.
    • Изменяет свою форму и может образовывать впячивания и пузырьки.
    • У клеток растений и грибов мембрана снаружи покрыта клеточной стенкой.
    • Выполняемые функции:
    • Ограничивает и защищает клетку.
    • Способствует соединению клеток в ткани.
    • Обеспечивает транспорт веществ в клетку и из неё.
  • Слайд 9

    Слайд 10

    Цитоплазматическая мембрана (или клеточная) отделяет клетку от внешней среды, полупроницаема, участвует в обмене веществ между клеткой и средой.

    Слайд 11

    запомните

    • Под мембраной находятся две важные части клетки – цитоплазма и ядро.
    • В цитоплазме находятся органоиды (или органеллы) и включения.
  • Слайд 12

    Цитоплазма

    1. Основные вещество цитоплазмы – гиалоплазма (существует в 2 формах: золь - более жидкая и гель – более густая.

    2. Органеллы – постоянные компоненты.

    3. Включения –временные компоненты.

    • Свойство цитоплазмы – циклоз (постоянное движение)
    • Обязательная часть клетки, заключенная между плазматической мембраной и ядром
  • Слайд 13

    цитоплазма

    Особенности строения:

    • Вязкое бесцветное вещество.
    • Находится в постоянном движении.
    • Содержит органоиды – постоянные структурные компоненты и клеточные включения – непостоянные структуры клетки.
    • Включения могут находиться в виде капель (жиры) и зёрен (белки, углеводы).
    • Выполняемые функции:
    • Связывает все части клетки в единое целое.
    • Осуществляет транспортировку веществ.
    • В ней протекают химические процессы.
    • Выполняет опорную функцию.
  • Слайд 14

    Важнейшая роль цитоплазмы заключается в объединении всех клеточных структур (компонентов) и обеспечении их химического взаимодействия.

    В ней находятся органоиды (органеллы) и включения.

    Слайд 15

    Основные органеллы

    • Мембранные
    • Митохондрии
    • Эндоплазматическая сеть
    • Аппарат Гольджи
    • Пластиды
    • Лизосомы
    • Немембранные
    • Рибосомы
    • Вакуоли
    • Клеточный центр
    • Органеллы движения

    Органоиды (от греч. organon – "орган" и eidos – "вид") – постоянные структурные компоненты, которые выполняют жизненно важные для клетки функции.

    Слайд 16

    ядро

    Ядро – центр управления процессами, происходящими в клетке.Ядро имеется в клетках всех эукариот за исключением эритроцитов млекопитающих. У некоторых простейших имеются два ядра, но как правило, клетка содержит только одно ядро. Ядро обычно принимает форму шара или яйца; по размерам (10–20 мкм) оно является самой крупной из органелл.

    Слайд 17

    Особенности строения:

    • Ограничено ядерной оболочкой, состоящей из двух мембран – наружной и внутренней.
    • Ядерная оболочка пронизана порами.
    • Ядро заполнено ядерным соком - кариоплазмой.
    • Может иметь одно или несколько ядрышек – это место синтеза р-РНК и образования субъединиц рибосом.
    • Содержит хромосомы, состоящие из ДНК и белка.

    Выполняемые функции:

    • Хранение генетической информации.
    • Осуществляет синтез РНК.
    • Регулирует процессы обмена веществ в клетке.
  • Слайд 18

    Митохондрии

    В цитоплазме большинства клеток животных и растений содержатся мелкие тельца (0,2-7 мкм) - митохондрии (греч. “митос" - нить, “хондрион" - зерно, гранула).

    Оболочка митохондрии состоит из двух мембран - наружной и внутренней.

    Наружная мембрана гладкая. Внутренняя мембрана, образует многочисленные складки, которые направлены в полость митохондрии. Складки внутренней мембраны называют кристами (лат. “криста" - гребень, вырост). Число крист неодинаково в митохондриях разных клеток. Их может быть от нескольких десятков до нескольких сотен. Митохондрии называют “силовыми станциями" клеток" так как их основная функция - синтез аденозинтрифосфорной кислоты (АТФ). Новые митохондрии образуются делением уже существующих в клетке митохондрий.

    Слайд 19

    Митохондрии

    Состав и строение:

    • 2Мембраны
    • Наружная
    • Внутренняя(образует выросты – кристы)
    • Матрикс(внутреннее полужидкое содержимое, включающее ДНК, РНК, белок и рибосомы)
    • Функции:
    • Синтез АТФ
    • Синтез собственных органических веществ,
    • Образование собственных рибосом
  • Слайд 20

    Эндоплазматическая сеть

    Строение

    1 мембрана образует:

    • Полости
    • Канальцы
    • Трубочки

    На поверхности мембран – рибосомы

    • Синтез органических веществ (с помощью рибосом)
    • Транспорт веществ
  • Слайд 21

    Аппарат Гольджи

    Строение

    • Окруженные мембранами полости (цистерны) и связанная с ними система пузырьков.
    • Накопление органических веществ
    • «Упаковка» органических веществ
    • Выведение органических веществ
    • Образование лизосом
  • Слайд 22

    Лизосомы

    Строение:

    • Пузырьки овальной формы (снаружи – мембрана, внутри – ферменты)
    • Расщепление органических веществ,
    • Разрушение отмерших органоидов клетки,
    • Уничтожение отработавших клеток.
  • Слайд 23

    Пластиды

    • Органоиды растительной клетки.
    • Хромопласты – пластиды жёлтого или красного цвета; Хлоропласты – зелёные пластиды; Лейкопласты – бесцветные пластиды в клетках неокрашенных частей растений.
  • Слайд 24

    Немембранные органеллы.Рибосомы

    Рибосомы обнаружены в клетках всех организмов. Это микроскопические тельца округлой формы диаметром 15-20 нм. Каждая рибосома состоит из двух неодинаковых по размерам частиц, малой и большой. В одной клетке содержится много тысяч рибосом, они располагаются либо на мембранах гранулярной эндоплазматической сети, либо свободно лежат в цитоплазме. В состав рибосом входят белки и РНК.

    Функция рибосом - это синтез белка. Синтез белка - сложный процесс, который осуществляется не одной рибосомой, а целой группой, включающей до нескольких десятков объединенных рибосом. Такую группу рибосом называют полисомой. Синтезированные белки сначала накапливаются в каналах и полостях эндоплазматической сети, а затем транспортируются к органоидам и участкам клетки, где они потребляются. Эндоплазматическая сеть и рибосомы, расположенные на ее мембранах, представляют собой единый аппарат биосинтеза и транспортировки белков.

    Слайд 25

    Рибосомы

    Строение:

    • Малая
    • Большая
    • Состав:
    • РНК (рибосомная)
    • Белки.
    • Обеспечивает биосинтез белка (сборку белковой молекулы из аминокислот).
  • Слайд 26

    Клеточный центр

    Строение:

    2 Центриоли (расположены перпендикулярно друг другу)

    Состав центриолей:

    • Белковые микротрубочки.
    • Свойства: способны к удвоению
    • Принимает участие в делении клеток животных и низших растений
  • Слайд 27

    Клеточные включения

    • Включения – непостоянные структурные компоненты клетки. В отличие от органоидов включения то появляются, то исчезают в клетке в процессе ее жизнедеятельности.
    • К клеточным включениям относятся углеводы, жиры и белки.
    • Все эти вещества накапливаются в цитоплазме в виде капель и зерен различной величины и формы. Они периодически синтезируются в клетке и используются в процессе обмена веществ.
  • Слайд 28

    Центральная вакуоль – растительная клетка

    • Покрыта тонопластом – мембраной
    • Заполнена клеточным соком
    • Формируется при участии ЭПС
    • Нуклеиновых кислот нет
  • Слайд 30

    Выделительная вакуоль простейших

    • Содержат воду и растворенные в ней продукты метаболизма.
    • Функция – осморегуляция, удаление жидких продуктов метаболизма.
  • Слайд 31

    Органеллы движения

    • Реснички (многочисленные цитоплазматические выросты на мембране).
    • Жгутики (единичныецитоплазматические выросты на мембране).
    • Псевдоподии (амебовидные выступы цитоплазмы).
    • Миофибриллы (тонкие нити длиной до 1 см.).

    Микротрубочки представляют собой достаточно жёсткие структуры и поддерживают форму клетки, образуя своеобразный цитоскелет. С опорой и движением связана и ещё одна форма органелл – микрофиламенты – тонкие белковые нити диаметром 5–7 нм.

    Цитоскелет клетки. Микрофиламенты

    окрашены в синий, микротрубочки – в зеленый, промежуточные волокна – в красный цвет.

    Слайд 32

    Особенности растительных клеток

    • В растительных клетках присутствуют все органеллы, обнаруженные в животных клетках (за исключением центриолей). Однако имеются в них и свойственные только для растений структуры.
    • Клеточные стенки растений состоят из целлюлозы, образующей микрофибриллы.
    • Клеточные стенки служат растениям опорой, предохраняют клетки от разрыва, определяют форму клетки, играют важную роль в транспорте воды и питательных веществ от клетки к клетке.
    • Соседние клетки связаны друг с другом плазмодесмами, проходящими через мелкие поры клеточных стенок.
  • Слайд 33

    Выводы урока:

    • Органоиды – специализированные внутриклеточные структуры, выполняющие определённые функции.
    • 4. Какие органоиды получили название «экспортная система клетки»?

      5. Какие органоиды есть только у растительной клетки?

      6. Органоид, отвечающий за хранение и передачу наследственной информации?

      7. Что такое фагоцитоз?

      8. Что такое пиноцитоз?

    Слайд 37

    Ответы:

    1. Рибосомы

    2. Митохондрии

    3. Лизосомы

    4. Комплекс Гольджи

    5. Пластиды

    7. Захват плазматической мембраной твёрдых частиц

    8. Захват плазматической мембраной капель жидкости

    Посмотреть все слайды

    Ученик 9г класса Рулёв Игорь

    Презентация может быть использована на уроках в 9, 10, 11 классах

    Скачать:

    Предварительный просмотр:

    Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


    Подписи к слайдам:

    Презентация на тему: строение клетки Презентация выполнена учеником 9г класса школы №1935 Рулёвым Игорем

    Из чего состоит клетка? Клетку можно разбить на 11 частей: 1)Мембрана 2)Ядро 3)Цитоплазма 4)Клеточный центр 5)Рибосомы 6)ЭПС 7)Комплекс Гольжди 8)Лизосомы 9)Клеточные включения 10)Митохондрии 11)Пластиды

    Мембрана Она представляет собой тонкую (около 7,5 нм2 толщиной) трехслойную оболочку клетки, видимую лишь в электронном микроскопе. Два крайних слоя мембраны состоят из белков, а средний образован жироподобными веществами. В мембране есть очень мелкие поры, благодаря чему она легко пропускает одни вещества и задерживает другие. Мембрана принимает участие в фагоцитозе (захватывание клеткой твердых частиц) и в пиноцитозе (захватывание клеткой капелек жидкости с растворенными в ней веществами).

    Ядро Ядро неделящейся клетки имеет ядерную оболочку. Она состоит из двух трехслойных мембран. Наружная мембрана связана через эндоплазматическуго сеть с клеточной мембраной. Через всю эту систему осуществляется постоянный обмен веществами между цитоплазмой, ядром и средой, окружающей клетку. Кроме того, в оболочке ядра есть поры, через которые также осуществляется связь ядра с цитоплазмой. Внутри ядро заполнено ядерным соком, в котором находятся глыбки хроматина, ядрышко и рибосомы. Хроматин образован белком и ДНК. Это тот материальный субстрат, который перед делением клетки оформляется в хромосомы, видимые в световом микроскопе.

    Цитоплазма Цитоплазма представляет собой сложную коллоидную систему. Ее строение: прозрачный полужидкий раствор и структурные образования. Общими для всех клеток структурными образованиями цитоплазмы являются: митохондрии, эндоплазматическая сеть, комплекс Гольджи и рибосомы. Все они вместе с ядром представляют собой центры тех или иных биохимических процессов, в совокупности составляющих обмен веществ и энергии в клетке. Эти процессы чрезвычайно разнообразны и протекают одновременно в микроскопически малом объеме клетки.

    Клеточный центр Клеточный центр - образование, до сих пор описанное только в клетках животных и низших растений. Он состоит из двух центриолей, строение каждой из которых представляет собой цилиндрик размером до 1 мкм. Центриоли играют важную роль в митотическом делении клеток. Кроме описанных постоянных структурных образований, в цитоплазме различных клеток периодически появляются те или иные включения. Это капельки жира, крахмальные зерна, кристаллики белков особой формы (алейроновые зерна) и др. В большом количестве такие включения встречаются в клетках запасающих тканей. Однако и в клетках других тканей такие включения могут существовать как временный резерв питательных веществ.

    Рибосомы Рибосомы находятся как в цитоплазме клетки, так и в ее ядре. Это мельчайшие зернышки диаметром около 15-20 им, что делает их невидимыми в световом микроскопе. В цитоплазме основная масса рибосом сосредоточена на поверхности канальцев шероховатой эндоплазматической сети. Функция рибосом заключается в самом ответственном для жизнедеятельности клетки и организма в целом процессе – в синтезе белков.

    ЭПС(эндоплазматическая сеть) Эндоплазматическая сеть представляет собой многократно разветвленные впячивания наружной мембраны клетки. Мембраны эндоплазматической сети обычно расположены попарно, а между ними образуются канальцы, которые могут расширяться в более значительные полости, заполненные продуктами биосинтеза. Вокруг ядра мембраны, слагающие эндоплазматическую сеть, непосредственно переходят в наружную мембрану ядра. Таким образом, эндоплазматическая сеть связывает воедино все части клетки. В световом микроскопе, при осмотре строения клетки, эндоплазматическая сеть не видна.

    Комплекс Гольджи Комплекс Гольджи (рис. 2, 5) сначала был найден только в животных клетках. Однако в последнее время и в растительных клетках обнаружены аналогичные структуры. Строение структуры комплекса Гольджи близка к структурным образованиям эндоплазматической сети: это различной формы канальцы, полости и пузырьки, образованные трехслойными мембранами. Помимо того, в комплекс Гольджи входят довольно крупные вакуоли. В них накапливаются некоторые продукты синтеза, в первую очередь ферменты и гормоны. В определенные периоды жизнедеятельности клетки эти зарезервированные вещества могут быть выведены из данной клетки через эндоплазматическую сеть и вовлечены в обменные процессы организма в целом.

    Лизосомы Это очень пестрый класс пузырьков размером 0,1-0,4 мкм, ограниченных одиночной мембраной (толщиной около 7 нм), с разнородным содержимым внутри. Они образуются за счет активности эндоплазматического ретикулюма и аппарата Гольджи и в этом отношении напоминают секреторные вакуоли. Основная их роль - участие в процессах внутриклеточного расщепления как экзогенных, так и эндогенных биологических макромолекул. Характерной чертой лизосом является то, что они содержат около 40 гидролитических ферментов: протеиназы, нуклеазы, фосфатазы, гликозидазы и др., оптимум действия которых осуществляется при рН5. В лизосомах кислое значение среды создается из-за наличия в их мембранах протоновой «помпы», потребляющей энергию АТФ.

    Клеточные включения Включения клетки Включения клетки - все структуры цитоплазмы клетки. Обычно В. к. подразделяют на 3 группы: постоянные, или органоиды, осуществляющие общие функции клетки (например, Митохондрии, Гольджи комплекс, Хлоропласты); временные, или параплазматические, образования, появляющиеся и исчезающие в процессе обмена веществ (например, секреторные гранулы, питательные вещества, жир, крахмал и др.); специальные, или метаплазматические, образования, имеющиеся в некоторых специализированных клетках, где они выполняют частные функции, например сокращения (миофибриллы мышечных клеток), опоры (тонофибриллы в клетках эпидермиса).

    Митохондрии Митохондрии - энергетические центры клетки. Это очень мелкие, но хорошо видимые в световом микроскопе тельца (длина 0,2- 7,0 мкм). Они находятся в цитоплазме и значительно варьируют по форме и числу в разных клетках. Жидкое содержимое митохондрий заключено в две трехслойные оболочки, каждая из которых имеет такое же строение, как и наружная мембрана клетки. Внутренняя оболочка митохондрии образует многочисленные впячивания и неполные перегородки внутри тела митохондрии. Эти впячивания называются кристами.

    Пластиды пластиды существуют в трех формах: зеленые хлоропласты, красно-оранжево-желтые хромопласты и бесцветные лейкопласты. Лейкопласты при определенных условиях могут превращаться в хлоропласты,а хлоропласты в свою очередь могут становиться хромопластами. Хлоропласты -это небольшие тельца довольно разнообразной формы, всегда зеленого цвета благодаря присутствию хлорофилла. Строение хлоропластов в клетке: имеют внутреннюю структуру, которая обеспечивает максимальное развитие свободных поверхностей. Эти поверхности создаются многочисленными тонкими пластинками, скопления которых находятся внутри хлоропласта. С поверхности хлоропласт, как и другие структурные элементы цитоплазмы, покрыт двойной мембраной. Каждая из них в свою очередь трехслойна, как и наружная мембрана клетки. Хромопласты по своей природе близки к хлоропластам, но содержат желтые, оранжевые и другие близкие к хлорофиллу пигменты, которые обусловливают окраску плодов и цветков у растений. Это происходит как за счет увеличения числа клеток путем деления, так и за счет увеличения размеров самих клеток. При этом большая часть строения тела клетки оказывается занятой вакуолями. Вакуоли представляют собой расширившиеся просветы канальцев в эндоплазматической сети, наполненные клеточным соком.

    строения клетки представителей разных царств организмов имеют характерные отличия. Признак Клетки Грибы Растения Животные Клеточная стенка В основном из хитина Из целлюлозы Нет Крупная вакуоль Есть Есть Нет Хлоропласты Нет Есть Нет Способ питания Гетеротрофный Автотрофный Гетеротрофный Центриоли Бывает редко Только у некоторых мхов и папоротников Есть Резервный питательный углевод Гликоген Крахмал Гликоген Рулёв Игорь 9Г

    Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


    Подписи к слайдам:

    СТРОЕНИЕ КЛЕТКИ - ОСНОВНЫЕ ОРГАНОИДЫ Учитель биологии СШ санатория «Дружба» Холомеева Анна Александровна

    ЦЕЛЬ УРОКА: Рассмотреть строение органоидов и определить их функции

    Итак, с чего же мы начнем, мистер Сайрес? – спросил Пенкроф на следующее утро. С самого начала, - ответил Сайрес Смит. Жюль Верн

    Кто открыл клетку Роберт Гук 1663 год Как называется наука о клетке Цитология

    Органоидами называют постоянно присутствующие в клетке структуры, которые выполняют строго определенные функции.

    Органоиды Мембранные ядро ЭПС комплекс Гольджи Лизосомы митохондрии Немембранные рибосомы цитоскелет клеточный центр

    ПЛАЗМАТИЧЕСКАЯ МЕМБРАНА СТРОЕНИЕ Бислой липидов с находящимися в нем белками, ограничивающий клетку ФУНКЦИИ Барьерная – отгараживает внутреннюю среду клетки от внешней Питательная – поглащает питательные вещества в виде капель(пиноцитоз), частиц(фагоцитоз) или путем диффузии

    Клеточная мембрана функции: разделение содержимого клетки и внешней среды; регуляция обмена веществ между клеткой и средой; место протекания некоторых биохимических реакций (в том числе фотосинтеза); объединение клеток в ткани. Важнейшее свойство плазматической мембраны – полупроницаемость. Через неё медленно диффундируют глюкоза, аминокислоты, жирные кислоты и ионы.

    СТРОЕНИЕ МЕМБРАНЫ

    Эндоцитоз

    Экзоцитоз

    Цитоплазма Представляет собой водянистое вещество – гиалоплазма (90 % воды), в котором располагаются различные органоиды, а также включения (глыбки гликогена, капли жира, кристаллы крахмала. В гиалоплазме протекает гликолиз, синтез жирных кислот, нуклеотидов и других веществ. Является динамической структурой. Органеллы движутся, а иногда заметен и циклоз – активное движение, в которое вовлекается вся протоплазма.

    ЦИТОПЛАЗМА СТРОЕНИЕ Внутренняя среда клетки ФУНКЦИИ Обеспечивает деятельность клетки как единой системы

    ЯДРО СТРОЕНИЕ Замкнутый резервуар, окруженный двумя слоями мембран, пронизанных ядерными порами. Внутри находится ядерный сок, хромосомы (состоят из ДНК и белка) и ядрышки (состоят из РНК и белка) ФУНКЦИИ Хранение генетической информации и синтез РНК

    Ядро По размерам (10–20 мкм) являясь самой крупной из органелл. Важнейшей функцией ядра является сохранение генетической информации. Покрыто ядерной оболочкой, которая состоит из двух мембран: наружной и внутренней, имеющих такое же строение, как и плазматическая мембрана. Между ними находится узкое пространство, заполненное полужидким веществом. Через множество пор в ядерной оболочке осуществляется обмен веществ между ядром и цитоплазмой (в частности, выход и-РНК в цитоплазму). Внешняя мембрана часто бывает усеяна рибосомами. В кариоплазму (ядерный сок) поступают вещества из цитоплазмы. Содержит хроматин – вещество, несущее ДНК, и ядрышки - округлые структуры внутри ядра, в которой происходит формирование рибосом. Совокупность хромосом, содержащихся в хроматине, называют хромосомным набором.

    МИТОХОНДРИЯ

    МИТОХОНДРИЯ СТРОЕНИЕ Овальные тельца, состоящие из двух слоев мембраны: внешнего (гладкого) и внутреннего (образует складки – кристы) ФУНКЦИИ Синтез АТФ при дыхании, способны к самостоятельному делению

    КОМПЛЕКС ГОЛЬДЖИ

    КОМПЛЕКС ГОЛЬДЖИ СТРОЕНИЕ Комплекс замкнутых мембранных резервуаров, расположенный вблизи ядра ФУНКЦИИ Синтез жиров и полисахаридов, транспорт веществ и их секреция, образование лизосом

    Эндоплазматическая сеть сеть мембран, пронизывающих цитоплазму. связывает органоиды между собой, по ней происходит транспорт питательных веществ. Гладкая ЭПС имеет вид трубочек, стенки которых из мембраны. В ней осуществляется синтез липидов и углеводов. На мембранах каналов и полостей гранулярной ЭПС расположено множество рибосом; данный тип сети участвует в синтезе белка.

    ЛИЗОСОМЫ

    ЛИЗОСОМЫ СТРОЕНИЕ Замкнутые мембранные тельца, содержащие ферменты, расцепляющие различные вещества клетки ФУНКЦИИ Переваривание поступающих в клетку питательных веществ, саморазрушение отмирающих клеток

    Рибосомы мелкие (15–20 нм в диаметре) органоиды, состоящие из р-РНК и полипептидов. Важнейшая функция – синтез белка. Их количество в клетке весьма велико: тысячи и десятки тысяч. Рибосомы могут быть связаны с эндоплазматической сетью или находиться в свободном состоянии. В процессе синтеза обычно одновременно участвуют множество рибосом, объединённых в цепи, называемые полирибосомами (полисомами).

    Микротрубочками Полые цилиндрические диаметром около 25 нм, длина может достигать нескольких микрометров. Стенки микротрубочек сложены из белка тубулина. Центриоли Встречаются в клетках животных и низших растений – мелкие полые цилиндры длиной в десятые доли микрометра, построенные из 27 микротрубочек. Во время деления клетки они образуют веретено деления. Базальные тельца по структурам идентичны центриолям, содержащиеся в жгутиках и ресничках. Эти органеллы вызывают биение жгутиков. Другая функция микротрубочек – транспорт питательных веществ. Микротрубочки представляют собой достаточно жёсткие структуры и поддерживают форму клетки, образуя своеобразный цитоскелет. С опорой и движением связана и ещё одна форма органелл – микрофиламенты – тонкие белковые нити диаметром 5–7 нм.

    В растительных клетках присутствуют все органеллы, обнаруженные в животных клетках (за исключением центриолей). Клеточные стенки растений состоят из целлюлозы, образующей микрофибриллы. В клетках древовидных растений слои целлюлозы пропитываются лигнином, придающим им дополнительную жёсткость. Служат растениям опорой, предохраняют клетки от разрыва, определяют форму клетки, играют важную роль в транспорте воды и питательных веществ от клетки к клетке. Соседние клетки связаны друг с другом плазмодесмами, проходящими через мелкие поры клеточных стенок. Вакуоль – наполненный жидкостью мембранный мешочек. В животных клетках могут наблюдаться небольшие вакуоли, выполняющие фагоцитарную, пищеварительную, сократительную и другие функции. Растительные клетки имеют одну большую центральную вакуоль с клеточным соком. Это концентрированный раствор сахаров, минеральных солей, органических кислот, пигментов и других веществ. Накапливают воду, могут содержать красящие пигменты, защитные вещества (например, таннины), гидролитические ферменты, вызывающие автолиз клетки, отходы жизнедеятельности, запасные питательные вещества.

    Пластиды: хлоропласты, хромопласты, лейкопласты СТРОЕНИЕ Мембранные органеллы различной окраски Зеленые цветные бесцветные ФУНКЦИИ фотосинтетическая запасная могут переходить друг в друга, способны к самостоятельному делению

    ХЛОРОПЛАСТЫ

    ЖИВОТНАЯ И РАСТИТЕЛЬНАЯ КЛЕТКА

    Растительная клетка Животная клетка Сходство Наличие плазматической мембраны. Цитоплазмы Ядра с ядрышком Хромосом Эндоплазматической сети Митохондрий Рибосом Комплекса Гольджи Отличия Есть центральная вакуоль Есть пластиды Нет лизосом Клетка снаружи покрыта целлюлозной клеточной стенкой Нет центральной вакуоли Нет пластид Есть лизосомы Клеточная стенка отсутствует, снаружи покрыта гликокалексом

    ВЫВОД: Функции органоидов сложны и многообразны. Они играют для клетки ту же роль, что и органы для целого организма.

    Контрольное обобщение материала Перечислите мембранные органоиды клетки.

    Цитоплазматическая мембрана, эндоплазматическая сеть, комплекс Гольджи, митохондрии, лизосомы, пластиды

    2. Какие химические вещества образуют ЦМ?

    Белки и липиды

    Какой органоид является энергетической станцией клетки?

    Митохондрия

    Какую функцию выполняют лизосомы?

    Внутриклеточное пищеварение и расщепление веществ

    Какова функция комплекса Гольджи?

    Синтез липидов и углеводов, секреция белков, углеводов и липидов

    Значение рибосом для клетки

    Синтез белка

    Какие органоиды создают цитоскелет клетки

    Микротрубочки

    Что такое включение?

    Непостоянные структуры, где находится запас питательных веществ: жир, крахмал, белок

    Значение ЭПС?

    Шероховатое ЭПС – синтез и транспорт белков Гладкое ЭПС – синтез и транспорт липидов

    Чем отделено ядро от цитоплазмы?

    Двуслойной ядерной мембраной.

    Назови немембранные органоиды

    Рибосомы, клеточный центр, микротрубочки.

    Домашнее задание: Знать строение органоидов и их функции Составить кроссворд по теме «Строение клетки» Письменно ответить на вопросы параграфа

    Список используемых источников: Открытая биология 2.6. ООО «Физикон» 2000-2005.


    Руководители

    • учитель биологии Логунова Г.И..
    • учитель информатики Гилева Е.Е.

    «Изучаем, узнаем, повторяем, познаем..»

    Слайд 2

    Цели проекта:

    • Изучить строение клетки
    • Познать жизнедеятельность клетки
    • Рассмотреть роль клетки в жизни организмов
  • Слайд 3

    Цитология

    ЦИТОЛОГИЯ -наука о клетке.

    Изучает строение и функции клеток, их связи и отношения в органах и тканях у многоклеточных организмов, а также одноклеточные организмы. Исследуя клетку как важнейшую структурную единицу живого, цитология занимает центральное положение в ряду биологических дисциплин; она тесно связана с гистологией, анатомией растений, физиологией, генетикой, биохимией, микробиологией и др. Изучение клеточного строения организмов было начато микроскопистами 17 в. (Р. Гук, М. Мальпиги, А. Левенгук); в 19 в. была создана единая для всего органического мира клеточная теория (Т. Шванн, 1839). В 20 в. быстрому прогрессу цитологии способствовали новые методы (электронная микроскопия, изотопные индикаторы, культивирование клеток и др.).

    Слайд 4

    ГУК Роберт (18 июля 1635, Фрешуотер, о. Уайт - 3 марта 1703, Лондон) английский естествоиспытатель, разносторонний ученый и экспериментатор, архитектор. Открыл (1660) закон, названный его именем. Высказал гипотезу тяготения. Сторонник волновой теории света. Улучшил и изобрел многие приборы, установил (совместно с Х. Гюйгенсом) постоянные точки термометра. Усовершенствовал микроскоп и установил клеточное строение тканей, ввел термин «клетка».

    Слайд 5

    Ученые,положившие начало цитологии

    ЛЕВЕНГУК (Leeuwenhoek) Антони Ван (1632-1723) нидерландский натуралист, один из основоположников научной микроскопии. Изготовив линзы с 150-300-кратным увеличением, впервые наблюдал и зарисовал (публикации с 1673) ряд простейших, сперматозоиды, бактерии, эритроциты и их движение в капиллярах.

    Слайд 6

    Ученые, положившие начало цитологии

    ШВАНН (Schwann) Теодор (1810 - 82) немецкий биолог, основоположник клеточной теории. На основании собственных исследований, а также работ М. Шлейдена и других ученых в классическом труде «Микроскопические исследования о соответствии в структуре и росте животных и растений» (1839) впервые сформулировал основные положения об образовании клеток и клеточном строении всех организмов. Труды по физиологии пищеварения, гистологии, анатомии нервной системы. Открыл пепсин в желудочном соке (1836).

    Слайд 7

    Клетка

    Клетка-элементарная целостная живая система, основа строения и жизнедеятельности всех животных и растений.

    Слайд 8

  • Слайд 9

    Мембрана

    Клеточная мембрана представляет собой двойной слой (бислой) молекул класса липидов, большинство из которых представляет собой так называемые сложные липиды - фосфолипиды. Молекулы липидов имеют гидрофильную («головка») и гидрофобную («хвост») часть. При образовании мембран гидрофобные участки молекул оказываются обращены внутрь, а гидрофильные - экспонированы наружу. Мембраны - структуры инвариабельные, весьма сходные у разных организмов. Некоторое исключение составляют, пожалуй, археи, у которых мембраны образованы глицерином и терпеноидными спиртами. Толщина мембраны составляет около 10 нм.

    Слайд 10

  • Слайд 11

    Цитоплазма

    Ограниченная от внешней среды плазматической мембраной, цитоплазма представляет собой внутреннюю полужидкую среду клеток. В цитоплазме эукариотических клеток располагаются ядро и различные органоиды. В составе основного вещества цитоплазмы преобладают белки. В цитоплазме протекают основные процессы обмена веществ, она объединяет в одно целое ядро и все органоиды, обеспечивает их взаимодействие, деятельность клетки, как единой целостной живой системы.

    Слайд 12

  • Слайд 13

    Слайд 14

    Слайд 15

    Митохондрии

    МИТОХОНДРИИ

    (от греч. mitos - нить и chondrion - зернышко, крупинка), органеллы животных и растительных клеток. В митохондрии протекают окислительно-восстановительные реакции, обеспечивающие клетки энергией. Число митохондрий в одной клетке от единиц до нескольких тысяч.

    Слайд 16

  • Слайд 17

    Ядро

    Клеточное ядро- это важнейшая часть клетки. Оно есть почти во всех клетках многоклеточных организмов. Клетки организмов, которые содержат ядро называют эукариотами. Клеточное ядро содержит ДНК- вещество наследственности, в котором зашифрованы все свойства клетки. Поэтому ядро необходимо для осуществления двух важнейших функций. Во-первых, это деление, при котором образуются новые клетки, во всём подобные материнской. Во-вторых, ядро регулирует все процессы белкового синтеза, обмена веществ и энергии, идущие в клетке. Ядро чаще всего имеет шаровидную форму или овальную форму. От цитоплазмы ядро отделено оболочкой, состоящей из двух мембран. Внутреннее содержимое ядра получило название кариоплазмы или ядерного сока. В ядерном соке расположены хроматин и ядрышки.

    Слайд 18

  • Слайд 19

    Лизосомы

    Лизосомы- шаровидные тельца диаметром от 0,2 до 1мкм. Они покрыты элементарной мембраной и содержат около 30 гидролитических ферментов, способных расщеплять белки, нуклеиновые кислоты, жиры и углеводы. Образование лизосом происходит в комплексе Гольджи. Если в цитоплазму клетки попадают пищевые вещества или микроорганизмы, ферменты лизосом принимают участие в их переваривании. При повреждении мембран лизосом содержащиеся в них ферменты могут разрушать структуры самой клетки и временные органы эмбрионов и личинок. Продукты лизиса через мембрану лизосом поступают в цитоплазму и включаются в дальнейший обмен веществ.Значение лизом в клетке:-являются дополнительным "сырьем" для химических и энергетических процессов-переваривают некоторые органоиды при голодании клетки, что обеспечивает минимум питательных веществ-играют большую роль в процессах развития у животных

    Слайд 20

  • Слайд 21

    Рибосома

    Рибосомы - микроскопические тельца округлой формы диаметром 15- 20 нм. Каждая рибосома состоит из двух неодинаковых по размерам частиц, малой и большой. В одной клетке содержится много тысяч рибосом, они располагаются либо на мембранах гранулярной эндоплазматической сети, либо свободно лежат в цитоплазме. В состав рибосом входят белки и РНК. Функция рибосом - это синтез белка. Синтез белка - сложный процесс, который осуществляется не одной рибосомой, а целой группой, включающей до нескольких десятков объединенных рибосом. Такую группу рибосом называют полисомой. Эндоплазматическая сеть и рибосомы, расположенные на ее мембранах, представляют собой единый аппарат биосинтеза и транспортировки белков.

    Слайд 22

  • Слайд 23

    Комплекс Гольджи

    Во многих клетках животных, например в нервных, он имеет форму сложной сети, расположенной вокруг ядра. В клетках растений и простейших аппарат Гольджи представлен отдельными тельцами серповидной или палочковидной формы. Строение этого органоида сходно в клетках растительных животных организмов, несмотря на разнообразие его формы. В состав аппарата Гольджи входят: полости, ограниченны мембранами и расположенные группами (по 5-10); крупные и мелкие пузырьки, расположенные на концах полостей. Все эти элементы составляют единый комплекс, как это видно на рисунке. Аппарат Гольджи выполняет много важных функций. По каналам эндоплазматической сети к нему транспортируются продукты синтетической деятельности клетки- белки, углеводы и жиры. Все эти вещества сначала накапливаются, а затем в виде крупных и мелких пузырьков поступают в цитоплазму и либо используются в самой клетке в процессе ее жизнедеятельности, либо выводятся из нее и используются в организме. Еще одна важная функция этого органоида заключается в том, что на его мембранах происходит синтез жиров и углеводов (полисахаридов), которые используются в клетке и которые входят в состав мембран. Благодаря деятельности аппарата Гольджи происходят обновление и рост плазматической мембраны.

    Слайд 24

  • Слайд 25

    Эндоплазматическая сеть

    Эндоплазматическая сеть.Вся внутренняя зона цитоплазмы заполнена многочисленными мелкими каналами и полостями, стенки которых представляют собой мембраны, сходные по своей структуре с плазматической мембраной. Эти каналы ветвятся, соединяются друг с другом и образуют сеть, получившую название эндоплазматической сети. Эндоплазматическая сеть неоднородна по своему строению. Известны два ее типа- гранулярная и гладкая. Эндоплазматическая сеть выполняет много разнообразных функций. Основная функция гранулярной эндоплазматической сети- участие в синтезе белка, который осуществляется в рибосомах.

    Слайд 26

  • Слайд 27

    Различия между эукариотической и прокариотической клетками

  • Слайд 28

  • Слайд 29

    Пластиды

    • Пластиды – органеллы, свойственные только растительным клеткам. Они окружены двойной мембраной. Пластиды делятся на хлоропласты, осуществляющие фотосинтез, хромопласты, окрашивающие отдельные части растений в красные, оранжевые и жёлтые тона, и лейкопласты, приспособленные для хранения питательных веществ: белков (протеинопласты), жиров (липидопласты) и крахмала (амилопласты).
    • Пластиды обладают относительной автономией. Так же, как и митохондрии, образующиеся из предшествующих митохондрий, они рождаются только из родительских пластид..
  • Слайд 30

    Различия между растительной и животной клетками

  • Слайд 31

    Клеточная стенка

    • Клеточная стенка - жёсткая оболочка клетки, расположенная снаружи от цитоплазматической мембраны и выполняющая структурные, защитные и транспортные функции. Обнаруживается у большинства бактерий, архей, грибов и растений, животные и многие простейшие не имеют клеточной стенки.
    • Клеточные стенки высших растений построены в основном из целлюлозы, гемицеллюлозы и пектина.
  • Слайд 32

    Различия между растительной и животной клетками

  • Слайд 33

    Центриоль

    • Центриоль - органелла, расположенная в цитоплазме около ядерной оболочки. Центриоли (обычно их две) лежат вблизи ядра. Каждая центриоль построена из цилиндрических элементов (микротрубочек), образованных в результате полимеризации белкатубулина. Девять триплетов микротрубочек расположены по окружности.
    • Центриоли принимают участие в формировании цитоплазматических микротрубочек во время деления клетки и в регуляции образования митотического веретена. В клеткахрастений центриолей нет, и митотическое веретено образуется там иным способом.
  • Слайд 34

    Формы клеток и типы почкования

    • Многостороннее почкование
    • Множественное почкование
    • Энтеробластическое почкование на узком и широком основании
    • Стреловидные клетки
    • Треугольные клетки
    • Серповидные клетки
    • Ламповидные клетки
  • Слайд 35

    Попадание веществ в клетку

    • ПИНОЦИТОЗ (от греч. pino - пью, впитываю и...цит), поглощение клеткой из окружающей среды жидкости с содержащимися в ней веществами. Один из основных механизмов проникновения в клетку высокомолекулярных соединений.
    • ФАГОЦИТОЗ (от греч. phagos - пожирать и...цит), поглощение клеткой из окружающей среды плотных частиц, например белков и полисахаридов, частиц пищи.
  • Слайд 36

    Обмен веществ в клетке

    Основная функция клетки – обмен веществ. Из межклеточного вещества в клетку постоянно поступают питательные вещества и кислород и выделяются продукты распада. Обмен веществ выполняет две функции. Первая функция – обеспечение клетки строительным материалом. Из веществ, поступающих в клетку, -аминокислот, глюкозы, органических кислот, нуклеотидов – в клетке непрерывно происходит биосинтез белков, углеводов, липидов, нуклеиновых кислот. Биосинтез – это образование белков, жиров, углеводов и их соединений из более простых веществ. Совокупность реакций, способствующих построению клетки и обновлению её состава, носит название пластического обмена.Вторая функция обмена веществ – обеспечение клетки энергией. Любое проявление жизнедеятельности нуждаются в затрате энергии. Совокупность реакций, обеспечивающих клетку энергией, называют энергетическим обменом. Через пластический и энергетический обмены осуществляется связь клетки с внешней средой. Эти процессы являются основным условием поддержания жизни клетки, источником её роста, развития и функционирования.

    Слайд 37

    Деление клетки

    • Деление – это вид размножения клеток. Во время деления клетки хорошо заметны хромосомы. Набор хромосом в клетках тела, характерный для данного вида растений и животных, называется кариотипом.
    • В любом многоклеточном организме существует два вида клеток – соматические (клетки тела) и половые клетки или гаметы. В половых клетках число хромосом в два раза меньше, чем в соматических.
    • Наиболее распространённым способом деления соматических клеток является митоз. Во время митоза клетка проходит ряд последовательных стадий или фаз, в результате которых каждая дочерняя клетка получает такой же набор хромосом, какой был у материнской клетки.
    • Во время митоза клетка проходит следующие четыре фазы: профаза, метафаза, анафаза и телофаза.
    • В профазе хорошо видны центриоли – органоиды, играющие определённую роль в делении дочерних хромосом. Центриоли делятся и расходятся к разным полюсам. В конце профазы ядерная оболочка распадается, исчезает ядрышко, хромосомы спирализуются и укорачиваются.
    • Метафаза характеризуется наличием хорошо видимых хромосом, располагающихся в экваториальной плоскости клетки.
    • В анафазе дочерние хромосомы расходятся к разным полюсам клетки.
    • В последней стадии – телофазе – хромосомы вновь раскручиваются и приобретают вид длинных тонких нитей. Вокруг них возникает ядерная оболочка, в ядре формируется ядрышко.
    • В процессе деления цитоплазмы все её органоиды равномерно распределяются между дочерними клетками. Весь процесс митоза продолжается обычно 1-2 часа.
    • В результате митоза все дочерние клетки содержат одинаковый набор хромосом и одни и те же гены. Следовательно, митоз – это способ деления клетки, заключающийся в точном распределении генетического материала между дочерними клетками.
  • Слайд 38

    • Мейоз, в отличие от митоза, является важным элементом полового размножения. При мейозе образуются клетки, содержащие лишь один набор хромосом, что делает возможным последующее слияние половых клеток (гамет) двух родителей. Биологическая сущность мейоза заключается в уменьшении числа хромосом в два раза и образовании гаплоидных гамет (то есть гамет, имеющих по одному набору хромосом).
    • В результате мейотического деления у животных образуются четыре гаметы. Мужские и женские гаметы сливаются, образуя зиготу. Хромосомные наборы при этом объединяются (этот процесс называется сингамией), в результате чего в зиготе восстанавливается удвоенный набор хромосом – по одному от каждого из родителей. Случайное расхождение хромосом и обмен генетическим материалом между гомологичными хромосомами приводят к возникновению новых комбинаций генов, повышая генетическое разнообразие. Образовавшаяся зигота развивается в самостоятельный организм.
  • Слайд 39

    1)Вид музыки-классическая музыка

    Слайд 40

    А теперь посмотрим реакцию клетки на другой вид музыки...

    Опыт: реакция клетки на различные виды музыки

    Слайд 41

    Опыт: реакция клетки на различные виды музыки

    2)Вид музыки-рок

    Слайд 42

    Вывод: проделав опыт,видно,что при звучании рока клетка делает движения интенсивнее, чем при звучании классической музыки.

    Слайд 43

    Заключение

    Клетка – это самостоятельное живое существо. Она питается, двигается в поисках пищи, выбирает, куда идти и чем питаться, защищается и не пускает внутрь из окружающей среды неподходящие вещества и существа. Всеми этими способностями обладают одноклеточные организмы, например, амёбы. Клетки, входящие в состав организма, специализированы. Клетка – самая мелкая единица живого, лежащая в основе строения и развития растительных и животных организмов нашей планеты. Она представляет собой элементарную живую систему, способную к самообновлению,саморегуляции, самовоспроизведению. Клетка является основным «кирпичиком жизни». Вне клетки жизни нет.

    «Не для школы-для жизни учимся!!!»

    Посмотреть все слайды


    Р.Гук ()








    Особенности бактериальной клетки. Клеточная стенка (муреин-полисахарид) Органоиды: мезосомы (имееют ферменты), рибосомы Нет ядра: ДНК в цитоплазме- кольцевая(нуклеоид, плазмида) Нет митоза, мейоза Размножение –деление надвое Спора- только для перенесения неблагоприятных условий Плазмида- 2-х цепочная ДНК


    Прокариоты Эукариоты Ядра нет. ДНК находится в цитоплазме Кольцевая ДНК Клеточная стенка-пектин и муреин. Мезосомы Мелкие рибосомы Цитоскелет отсутствует Транспорт веществ через клеточную стенку Митоз и мейоз отсутствуют Гаметы отсутствуют Размеры – 0,3 -5,1 мкм Имеет оболочку из двух мембран. Ядрышки. Линейные ДНК. Хромосомы. У животных – нет, растения – Целлюлоза, грибы –хитин. Мембранные органоиды Рибосомы Цитоскелет Фагоцитоз и пиноцитоз Митоз и мейоз Гаметы Размеры до 40 мкм и более







    Органоиды, характерные для растительной клетки ОрганоидыСтроениеФункции Клеточная стенка Целлюлоза- полисахарид Защитная, опорная, «наружный каркас клетки». ПластидыХлоропласты-2-х мембранные Фотосинтетическая, запасающая. Вакуоли Крахмал Крупные полости, заполненные клеточным соком. Осмотические резервуары клетки, заполненные водным раствором различных веществ, являющихся запасными или конечными продуктами




    Органоиды, общие для растительной и животной клеток ОрганоидыФункции Плазматическая мембрана Барьерная,транспортная- пиноцитоз,фагоцитоз. диффузия Цитоплазма Обеспечивает деятельность клетки как единой системы ЭПСГладкая-синтез липидов и углеводов, их хранение и транспорт, шероховатая- синтезируется белок Рибосомы Синтез белка Митохондрии Синтез АТФ при дыхании Аппарат Гольджи Синтез жиров и полисахаридов, транспорт веществ и их секреция, образование лизосом ЛизосомыПереваривание поступающих в клетку питательных веществ, саморазрушение отмирающих клеток Ядро Хранение генетической информации и синтез РНК




    Органоиды, характерные для животной клетки ОрганоидыСтроениеФункции ГликокаликсТонкий слой полисахаридов и белков, Связь клетки с окружающей средой и другими клетками Клеточный центр Состоит из двух маленьких телец – центриолей. Участвует в образовании веретена деления Органоиды движения Гликоген Реснички, миофибриллы Двигательная










  • Выбор редакции
    Архимандрит Мелхиседек (Артюхин).Беседы с батюшкой «Где просто, там ангелов со сто…» В ноябре 1987 г. Оптина Пустынь была возвращена...

    В а н я (в кучерском армячке). Папаша! кто строил эту дорогу? П а п а ш а (в пальто на красной подкладке), Граф Петр Андреевич...

    Текст работы размещён без изображений и формул. Полная версия работы доступна во вкладке "Файлы работы" в формате PDF Введение Откуда...

    С лужение человека Богу, законоположенное Богом, ясно и просто. Но мы сделались так сложны и лукавы, так чужды духовного разума, что...
    ПРАВИТЕЛЬСТВО РОССИЙСКОЙ ФЕДЕРАЦИИО СТАВКАХ ПЛАТЫ ЗА НЕГАТИВНОЕ ВОЗДЕЙСТВИЕ НА ОКРУЖАЮЩУЮ СРЕДУ И ДОПОЛНИТЕЛЬНЫХ КОЭФФИЦИЕНТАХ В...
    В течение всего 2018 года по сложившейся традиции в налоговое законодательство (в т.ч. - в Налоговый кодекс РФ) внесли кучу изменений,...
    Форма 6-НДФЛ содержит обобщенную информацию о налоге, уплаченном с доходов работников, и подается ежеквартально. В ней подлежат...
    Косвенные расходы. Учет и распределение при расчете налога на прибыль Косвенные расходы, что к ним относится: учет и распределение...
    В 2017 году нужно озаботиться заполнением отчета о движении денежных средств за 2016 год. Кто должен сдавать отчет? Каково назначение...