Ядерная энергетическая установка для ракет. История отечественных космических ядерных установок Ядерная энергетическая установка для ракет


В 2009 г. Комиссией при Президенте Российской Федерации по модернизации и технологическому развитию экономики России принято решение о реализации проекта «Создание транспортно-энергетического модуля на основе ядерной энергодвигательной установки мегаваттного класса».
ОАО «НИКИЭТ» определен Главным конструктором реакторной установки.
Федеральное космическое агентство выдало НИКИЭТ лицензию №981К от 29.08.2008 г. на осуществление космической деятельности.

Из интервью Ю.Г. Драгунова РИА « ». Опубликовано 28.08.2012

Россия активно развивает атомную энергетику, опираясь на колоссальный опыт и знания, накопленные за десятилетия отечественной атомной программы.
Одним из первопроходцев по созданию прорывных технологий в нашей стране и в мире является Научно-исследовательский и конструкторский институт энерготехники имени Н.А. Доллежаля (НИКИЭТ), отмечающий в этом году 60-летний юбилей. Специалисты института внесли неоценимый вклад в обороноспособность нашей страны, разработали проекты первого реактора для наработки оружейных изотопов, первой реакторной установки для атомной подводной лодки, первого энергореактора для АЭС. По проектам и с участием НИКИЭТ создано 27 исследовательских реакторов в России и за её пределами.
И сегодня Институт конструирует совершенно новые реакторы, работает над созданием реакторной установки для уникальной ядерной энергодвигательной установки мегаваттного класса для космического корабля, не имеющей мировых аналогов.
О том, как идут работы по прорывным направлениям российской ядерной науки и техники, РИА Новости рассказал директор - генеральный конструктор НИКИЭТ, член-корреспондент РАН Юрий Григорьевич Драгунов.
- Институт создает уникальный ядерный двигатель для нового российского космического корабля. На каком этапе сейчас этот проект?
- Все 60 лет своего существования Институт следует девизу основателя и первого директора НИКИЭТ академика Н.А. Доллежаля: «Если можешь – иди впереди века». И подтверждение тому - данный проект. Создание этой установки - это комплексная работа ГНЦ ФГУП «Центр Келдыша», ОАО РКК «Энергия», КБХМ им. А.М. Исаева и предприятий Госкорпорации «Росатом». Наш Институт определен единственным исполнителем по реакторной установке и определен как координатор работ от организаций Росатома. Работа действительно уникальная, аналогов сегодня нет, поэтому она идет достаточно сложно. Поскольку мы – организация конструкторская, мы имеем определенные ступени, этапы и мы их шаг за шагом проходим. В прошлом году мы завершили разработку эскизного проекта реакторной установки, в этом году выполняем технический проект реакторной установки. Требуется огромный объем испытаний, особенно топлива, в том числе исследования поведения топлива и конструкционных материалов в реакторных условиях. Работа по техническому проекту будет достаточно длинной, примерно около 3-х лет, но первую стадию технического проекта, основную документацию мы в этом году подготовим. Мы сегодня определили и приняли техническое решение по выбору варианта конструкции тепловыделяющего элемента и окончательное техническое решение по выбору варианта конструкции реактора. И буквально пару недель назад приняли техническое решение по выбору варианта конструкции активной зоны и по ее компоновке.
- А какие проблемы есть? Неужели все так гладко идет?
- Сегодня у нас достаточно широкая кооперация, более трех десятков организаций участвуют в разработке проекта реакторной установки. Все договоры по этой теме заключены, и есть полная уверенность, что мы эту работу сделаем вовремя. Работа координируется советом руководителя проекта под моим председательством, мы раз в квартал рассматриваем состояние работ. Одна проблема, я не могу о ней не сказать. К сожалению, как и везде по всей тематике, у нас договоры заключаются сроком на один год. Процесс заключения растягивается, и, с учетом времени на конкурсные процедуры, фактически мы съедаем у себя время. Я в НИКИЭТ принял решение, мы открываем специальный заказ и начинаем работать с 11 января. А вот участников гораздо труднее привлечь. Проблема есть, поэтому мы сегодня озадачили наших участников, чтобы они дали планы до завершения разработки, как минимум, на трехлетний период. Мы формируем эти предложения, и будем выходить в правительство с просьбой все-таки для этого проекта перейти на трехлетний контракт. Тогда мы будем четко видеть график и лучше организовывать и координировать работы по проекту. Решение этой задачи очень важно для успешной реализации проекта.
- Это будет чисто российский проект, никаких зарубежных партнеров для НИОКРов привлекать не будете?
- Я думаю, что проект будет чисто российский. Здесь все-таки очень много ноу-хау, много новых решений и, по моему мнению, проект должен быть чисто российский.
- Топливо в космической реакторной установке какое будет?
- Принципиально на этой стадии технического проекта приняли вариант диоксидного топлива. Того топлива, которое имеет опыт эксплуатации в установках с термоэмиссией. Мы сделали тепловыделяющий элемент секционным, чтобы обеспечить те условия, которые уже проверены в действующих реакторах. Да, это новизна, да, это инновационный проект, но по ключевым элементам он должен быть отработан и должен успеть в те сроки, которые поставлены президентским проектом.
- Вы рассматриваете вариант перегрузки топлива в установке?
- Нет, вариант перегрузки мы на сегодня не рассматриваем. Это может быть многоразовое использование, но мы рассчитываем на 10 лет эксплуатации и я так полагаю, судя по результатам обсуждения в научной среде, с Роскосмосом, что на сегодня задача сделать работу установки дольше не ставится. Роскосмос обсуждает увеличение мощности установки, но это, в общем-то, не будет проблемой, если мы этот проект сделаем, реализуем и самое главное – испытаем на стенде наземный прототип. После этого мы его легко переработаем на большую мощность.

Создание ядерных энергетических и энергодвигательных установок космического назначения

На Семипалатинском полигоне с 1960 года по 1989 год проводились работы по созданию ядерного ракетного двигателя.

Были созданы:

Реакторный комплекс ИГР;
стендовый комплекс «Байкал-1» с реактором ИВГ-1 и двумя рабочими местами для отработки изделий 11Б91;
реактор РА (ИРГИТ).

Реактор ИГР

Реактор ИГР является импульсным реактором на тепловых нейтронах с гомогенной активной зоной, представляющей собой кладку из содержащих уран графитовых блоков, собранных в виде колонн. Отражатель реактора сформирован из аналогичных блоков, не содержащих урана.

Реактор не имеет принудительного охлаждения активной зоны. Выделившееся в процессе работы реактора тепло аккумулируется кладкой, а затем через стенки корпуса реактора передается воде контура расхолаживания.


Реактор ИГР



Реактор ИВГ-1 и системы подачи компонентов


Реактор РА (ИРГИТ)

Достигнутые результаты

1962-1966 годы

В реакторе ИГР проведены первые испытания модельных твэлов ЯРД. Результаты испытаний подтвердили возможность создания твэлов с твердыми поверхностями теплообмена, работающих при температурах свыше 3000К, удельных тепловых потоках до 10 МВт/м2 в условиях мощного нейтронного и гамма-излучений (проведен 41 пуск, испытано 26 модельных ТВС различных модификаций).

1971-1973 годы

В реакторе ИГР проведены динамические испытания высокотемпературного топлива ЯРД на термопрочность, в ходе которых реализованы следующие параметры:

Удельное энерговыделение в топливе – 30 кВт/см3
удельный тепловой поток с поверхности твэлов – 10 МВт/м2
температура теплоносителя – 3000К
скорость изменения температуры теплоносителя при увеличении и снижении мощности – 1000 К/с
длительность номинального режима – 5 с

1974-1989 годы

В реакторе ИГР проведены испытания ТВС различных типов реакторов ЯРД, ЯЭДУ и газодинамических установок с водородным, азотным, гелиевым и воздушным теплоносителями.

1971-1993 годы

Проведены исследования выхода из топлива в газообразный теплоноситель (водород, азот, гелий, воздух) в диапазоне температуры 400…2600К и осаждения в газовых контурах продуктов деления, источниками которых являлись экспериментальные ТВС, размещенные в реакторах ИГР и РА.

Сравнительные показатели результатов, полученных на реакторе ИВГ-1
и по программам разработок ЯРД в США

СССР
1961-1989
Затраченные средства, млрд.$ ~ 0,3
5
поэлементный
Топливная композиция
UC-ZrC,
UC-ZrC-NbC


средняя/максимальная, МВт/л 15 / 33
3100
Удельный импульс тяги, с ~ 940
4000

США
Период активных действий по тематике 1959-1972
Затраченные средства, млрд.$ ~2,0
Количество изготовленных реакторных установок 20
Принципы отработки и создания интегральный
Топливная композиция Твердый раствор
UC2 в графитовой
матрице

Теплонапряженность активной зоны,
средняя/максимальная, МВт/л 2,3 / 5,1
Максимально достигнутая температура рабочего тела, К 2550 2200
Удельный импульс тяги, с ~ 850
Ресурс работы на максимальной температуре рабочего тела, с 50 2400


Вчера, без всякого преувеличения, мы стали свидетелями эпохального события, открывающего новые, совершенно фантастические перспективы для военной техники и (в перспективе) - энергетики и транспорта вообще.

Но для начала хотелось бы понять, как работает ядерная энергетическая установка для ракет и подводных аппаратов, о которой говорил Путин. Что именно в ней является движителем? Откуда берётся тяга? Не за счёт же вылетающих из сопла нейтронов...

Когда узнал со слов коллеги о том, что у нас созданы ракеты с практически неограниченной дальностью полёта, обалдел. Показалось, он что-то упустил, а слово "неограниченной" было упомянуто в каком-то узком смысле.

Но информация, полученная затем из первоисточника, сомнений не вызывала. Звучала, напомню, она так:

Одно из них – создание малогабаритной сверхмощной ядерной энергетической установки, которая размещается в корпусе крылатой ракеты типа нашей новейшей ракеты Х-101 воздушного базирования или американского «Томагавка», но при этом обеспечивает в десятки раз – в десятки раз! – большую дальность полёта, которая является практически неограниченной.

В услышанное невозможно было поверить, но не верить было нельзя - это сказал ОН. Включил мозг и тут же получил ответ. Да какой!

Ну, черти! Ну, гении! Нормальному человеку такое даже в голову не придёт!

Итак, до сих пор мы знали только о ядерных силовых установках для космических ракет. В космических ракетах обязательно есть вещество, которое, будучи разогретым или разогнанным ускорителем, питаемым ядерной силовой установкой, с силой выбрасывается из сопла ракеты и обеспечивает ей тягу.

Вещество при этом расходуется и время работы двигателя ограничено.

Такие ракеты уже были и ещё будут. А вот за счёт чего движется ракета нового типа, если её дальность является "практически неограниченной"?

Ядерная энергетическая установка для ракет

Чисто теоретически, кроме тяги на веществе, имеющемся в запасе на ракете, движение ракеты возможно за счёт тяги электрических двигателей с "пропеллерами" (винтовой двигатель). Электричество при этом производит генератор, питающийся от ядерной силовой установки.

Но такую массу без большого крыла на винтовой тяге, да ещё с винтами небольшого диаметра, в воздухе не удержать - слишком мала такая тяга. А это таки ракета, а не беспилотник.

Итого, остаётся самый неожиданный и, как оказалось, самый эффективный способ обеспечения ракеты веществом для тяги - взятие его из окружающего пространства.

Т.е., как бы это удивительно ни звучало, но новая ракета работает "на воздухе"!

В том смысле, что из её сопла вырывается именно разогретый воздух и более ничего! А воздух не закончится, пока ракета находится в атмосфере. Именно поэтому эта ракета - крылатая, т.е. её полёт проходит целиком в атмосфере.

Классические технологии ракет большой дальности старались сделать полёт ракеты выше, чтобы уменьшить трение о воздух и тем самым увеличить их дальность. Мы как всегда сломали шаблон и сделали ракету не просто большой, а неограниченной дальности именно в воздушной среде.

Неограниченная дальность полёта даёт возможность таким ракетам работать в режиме ожидания. Запущенная ракета прибывает в район патрулирования и нарезает там круги, ожидая доразведки данных о цели или прибытия цели в данный район. После чего неожиданно для цели немедленно её атакует.

Ядерная энергетическая установка для подводных аппаратов

Думаю, аналогично устроена и ядерная энергетическая установка для подводных аппаратов о которых говорил Путин. С той поправкой, что вместо воздуха используется вода.

Дополнительно об этом говорит то, что эти подводные аппараты обладают низкой шумностью. Известная торпеда "Шквал", разработанная ещё в советское время, имела скорость порядка 300 км/час, но была очень шумной. По сути это была ракета, летящая в воздушном пузыре.

За малошумностью же стоит новый принцип движения. И он - тот же самый, что и в ракете, потому что универсален. Была бы только окружающая среда минимально необходимой плотности.

Этому аппарату неплохо подошло бы название "Кальмар", потому что по сути это водомётный двигатель в "ядерном исполнении" :)

Что касается скорости, она кратно превосходит скорость самых быстрых надводных кораблей. Самые быстрые корабли (именно корабли, а не катера) имеют скорость до 100-120 км/час. Следовательно, с минимальным коэффициентом 2 получаем скорость 200-250 км/час. Под водой. И не очень шумно. И с дальностью в многие тысячи километров... Страшный сон наших недругов.

Относительно ограниченная по сравнению с ракетой дальность - временное явление и объясняется тем, что морская вода высокой температуры - очень агрессивная среда и материалы камеры, условно говоря, сгорания, имеют ограниченный ресурс. Со временем же дальность этих аппаратов может быть увеличена в разы только за счёт создания новых, более устойчивых материалов.

Ядерная энергетическая установка

Несколько слов о самой ядерной энергетической установке.

1. Поражает воображение фраза Путина:

При объёме в сто раз меньше, чем у установок современных атомных подводных лодок, имеет большую мощность и в 200 раз меньшее время выхода на боевой режим, то есть на максимальную мощность.

Опять одни вопросы.
Как они этого добились? Какие конструкторские решения и технологии применены?

Мысли такие.

1. Радикальное, на два порядка, увеличение отдачи мощности на единицу массы возможно только при условии приближения режима работы ядерного реактора к взрывному. При этом реактор надёжно управляется.

2. Поскольку околовзрывной режим работы обеспечивается надёжно, скорее всего, это реактор на быстрых нейтронах. На мой взгляд, только на них возможно безопасное использование столь критического режима работы. Кстати, для них топлива на Земле - на столетия.

3. Если же со временем мы узнаем, что это таки реактор на медленных нейтронах, я тем более снимаю шляпу перед нашими ядерщиками, потому что без официального заявления в это совершенно невозможно поверить.

В любом случае, смелость и изобретательность наших ядерщиков поразительна и достойна самых громких слов восхищения! Особенно приятно, что наши ребята умеют работать в тиши. А потом как грохнут новостью по голове - хоть стой, хоть падай! :)

Как это работает
Примерная, смысловая, схема работы двигателя ракеты на основе ядерной силовой установки выглядит так.

1. Открывается, условно говоря, впускной клапан. Набегающий воздушный поток попадает через него в камеру нагрева, которая постоянно разогрета от работы реактора.

2. Впускной клапан закрывается.

3. Воздух в камере нагревается.

4. Открывается выпускной клапан и воздух с большой скоростью вырывается из сопла ракеты.

5. Выпускной клапан закрывается.

Цикл повторяется с высокой частотой. Отсюда эффект непрерывной работы.

P.S. Описанный выше механизм, повторю, - смысловой. Он дан по просьбе читателей для лучшего понимания того, как этот двигатель может вообще работать. В реальности, не исключено, реализован прямоточный двигатель. Главное в данной статье - не определение типа двигателя, а выявление вещества (набегающего воздуха), которое используется в качестве единственного рабочего тела, дающего тягу ракете.

Безопасность

Использование открытия российских учёных в гражданском секторе тесно связано с безопасностью ядерной силовой установки. Не в смысле её возможного взрыва - думаю, этот вопрос решён, - а в смысле безопасности его выхлопа.

Защита малогабаритного ядерного двигателя явно меньше, чем у большого по размерам, поэтому нейтроны наверняка будут проникать в "камеру сгорания", а точнее, камеру разогрева воздуха, тем самым с некоторой вероятностью делая радиоактивным всё, что таковым можно в воздухе сделать.

Азот и кислород имеют радиоактивные изотопы с малым временем полураспада и не опасны. Радиоактивный углерод вещь долгоживущая. Но есть и хорошие новости.

Радиоактивный углерод образуется в верхних слоях атмосферы под действием космических лучей и так, так что свалить все на ядерные двигатели не получится. Но главное, концентрация углекислого газа в сухом воздухе составляет всего 0,02÷0,04%.

Учитывая же, что процент углерода, становящийся радиоактивным, величина ещё на несколько порядков меньшая, предварительно можно считать, что выхлоп ядерных двигателей не более опасен, чем выхлоп ТЭЦ, работающей на угле.

Более точная информация появится, когда дело подойдёт к гражданскому применению этих двигателей.

Перспективы

Честно говоря, от перспектив захватывает дух. Причём я уже говорю не о военных технологиях, здесь всё ясно, а о применении новых технологий в гражданском секторе.

Где могут быть применены ядерные силовые установки? Пока навскидку, чисто теоретически, в перспективе 20-30-50 лет.

1. Флот, в том числе гражданский, транспортный. Многое придётся переводить на подводные крылья. Зато скорость можно легко увеличить вдвое/втрое, а стоимость эксплуатации с годами будет только падать.

2. Авиация, прежде всего транспортная. Хотя, если безопасность с точки зрения опасности облучения окажется минимальной, возможно применение и для гражданских перевозок.

3. Авиация с вертикальным взлётом и посадкой. С использованием резервуаров со сжатым воздухом, пополняемых во время полёта. Иначе, на малых скоростях, необходимую тягу не обеспечить.

4. Локомотивы скоростных электропоездов. С использованием промежуточного электрогенератора.

5. Грузовые автомобили на электротяге. Тоже, разумеется, с использованием промежуточного электрогенератора. Это, думаю, будет в отдалённой перспективе, когда силовые установки удастся уменьшить ещё в несколько раз. Но исключать такой возможности я бы не стал.

Это уже не говоря о наземном/мобильном использовании ядерных электроустановок. Одна беда - для работы таких малогабаритных ядерных реакторов требуются не уран/плутоний, а гораздо более дорогие радиоактивные элементы, наработка которых в ядерных же реакторах пока очень и очень дорога и требует времени. Но и эта задача может быть со временем решена.

Друзья, обозначена новая эра в сфере энергетики и транспорта. Судя по всему, Россия станет лидером этих направлений на ближайшие десятилетия.

Примите мои поздравления.
Скучно не будет!

Первое широкое применение атомные батареи нашли в космосе, поскольку именно там требовались источники энергии, способные вырабатывать тепло и электричество в течение длительного времени, в условиях резкого и очень сильного перепада температур, при значительных переменных нагрузках, и поскольку в условиях непилотируемых полётов радиоизлучение от источника питания не несло большой угрозы (в космосе и без него излучений хватает). Химические источники энергии не оправдали себя. Так, когда 4.10.1957 в СССР был выведен на орбиту первый искусственный спутник Земли, то его химические батареи могли давать энергию в течение 23-х дней. После этого мощность их была исчерпана. Кремниевые солнечные батареи эффективны лишь при полётах вблизи Солнца, для полётов к удалённым планетам солнечной системы они не годятся.

Способы преобразования энергии на космических аппаратах бывают двух видов: прямое и машинное. Типы преобразователей тепловой энергии в электрическую делятся на статические (т.е. без подвижных частей), и динамические (т.е. с подвижными, вращающимися или двигающимися частями). Проблема выбора вида преобразования энергии по-прежнему остается актуальной разработчиков различных преобразователей и космических ядерных энергетических установок (КЯЭУ) на их основе.

Так, в рамках известной инициативы НАСА по космическим ядерным энергетическим установкам для реализации программы «Прометей» по проекту «Джимо» (орбитальная экспедиция к ледяным лунам Юпитера) выбран динамический преобразователь (газо-турбинная установка на основе цикла Брайтона). Ресурс КЯЭУ 10 лет при выходной электрической мощности от 250 кВт(эл).

Начиная с начала шестидесятых годов, достаточно широкий размах в СССР, США и ряде других стран получили работы по прямому преобразованию тепловой энергии в электрическую на основе термоэлектрических и термоэмиссионных преобразователей. Подобные методы преобразования энергии принципиально упрощают схему установок, исключают промежуточные этапы превращения энергии и позволяют создать компактные и лёгкие энергетические установки.

СССР использовал атомные батареи в спутниках типа «Космос». В сентябре 1965 в составе аппаратов «Космос-84» и «Космос-90» были запущены радиоизотопные термоэлектрические генераторы (РИТЭГ) «Орион-1» электрической мощностью 20 Вт. Вес РИТЭГ составлял 14,8 кг, расчётный ресурс - 4 месяца. Ампулы РИТЭГ, содержащие полоний-210, были сконструированы в соответствии с принципом гарантированного сохранения целостности и герметичности при всех авариях. Этот принцип оправдал себя при авариях ракет-носителей в 1969, когда, несмотря на полное разрушение объектов, топливный блок, содержащий 25000 кюри полония-210, остался герметичным.

Исследовательский корабль «Луноход-1», спущенный на поверхность Луны Советским Союзом в ноябре 1970 года, был обеспечен радиоактивными изотопами (полоний-210) для регулировки температуры. «Луноход-1» функционировал в течение 322 дней. За 11 лунных суток он прошёл 10,5 км, исследуя район Моря Дождей, осуществил детальное топографическое обследование 80000 кв.м. лунной поверхности. За это время был проведён 171 сеанс связи, с помощью радиотелесистем «Лунохода-1», на Землю было передано свыше 200 тысяч снимков лунной поверхности». Успешно работал радиоизотопный термоэлектрический генератор тока и на аппарате «Луноход-2».

Источники энергии, снабженные долгоживущими изотопами, особенно необходимы для космических зондов, находящихся в "дальних странствиях" к удаленным планетам. Поэтому американские зонды «Викинг», которые были высажены на Марс в июле и сентябре 1976 с целью поисков там разумной жизни, имели на борту два радиоизотопных генератора для обеспечения энергией спускаемого аппарата. Космические станции вблизи Земли, такие, как «Салют» (СССР) и «Скайлэб» (США), получают энергию от солнечных батарей, питаемых энергией Солнца. Однако зонды для Юпитера нельзя оснащать солнечными батареями. Излучения Солнца, которое получает зонд вблизи далекого Юпитера, совершенно недостаточно для обеспечения прибора энергией. Кроме того, при космическом перелете Земля - Юпитер требуется преодолеть огромные межпланетные расстояния при продолжительности полета от 600 до 700 дней. Для таких космических экспедиций основой удачи является надежность энергетических установок. Поэтому американские зонды планеты Юпитер – «Пионер 10», который стартовал в феврале 1972 года, а в декабре 1973 года достиг наибольшего приближения к Юпитеру, а также его преемник «Пионер-2» - были оснащены четырьмя мощными батареями с плутонием-238, помещенными на концах кронштейнов длиной в 27 м. В 1987 году «Пионер 10» пролетел мимо самой удаленной от Земли планеты - Плутона, а затем это произведенное на земле космическое тело покинуло нашу Солнечную систему.

Табл.1 Основные характеристики КЯЭУ, получившие реальный опыт использования в составе космических аппаратов в США и СССР/России


1 – реактор; 2 – трубопровод жидкометаллического контура; 3 – радиационная защита; 4 – компенсационный бак ЖМК; 5 – холодильник-излучатель; 6 – ТЭГ; 7 – силовая рамная конструкция.

Можно сказать, что использование радиоизотопных источников тепла вместо химических позволило в десятки и даже в сотни раз увеличить длительность пребывания спутников на орбите. Однако при использовании спутников с большим энергопотреблением мощности радиоизотопных генераторов оказывается недостаточно. При энергопотреблении более 500 Вт более рентабельно использовать ядерную реакцию деления, т.е. маленькие атомные станции.


1 – блок системы подачи пара цезия и приводов органов регулирования; 2 – ТРП; 3 – трубопровод ЖМК; 4 – РЗ; 5 – компенсационный бак ЖМК; 6 – ХИ; 7 – рамная конструкция.

ЯДЕРНЫЕ ЭНЕРГЕТИЧЕСКИЕ УСТАНОВКИ С ТЕРМОЭЛЕКТРИЧЕСКИМИ ГЕНЕРАТОРАМИ

Космическая гонка, особенно в военной сфере, потребовала энергооснащенности спутников, в десятки раз превышающей ту, что могли обеспечить солнечные батареи или изотопные источники питания. Действительно, на базе радиоактивного изотопа трудно построить прямой преобразователь тепла в электроэнергию (на термоэлементах) большой мощности. В этом отношении намного перспективнее использование цепной ядерной реакции. В космическом пространстве в 2000 находилось 55 ядерных реакторов. Использование атомной-тепловой энергии можно разделить на машинное и безмашинное. Необходимую мощность дают компактные ядерно-энергетические установки (ЯЭУ), которые из-за ограниченных размеров спутников должны работать без габаритных парогенераторов или турбин. Прямое преобразование ядерной тепловой энергии в электрическую имеет решающие преимущества по сравнению с машинным для автономных реакторных энергоустановок сравнительно небольшой мощности (от 3 кВт до 3-5 МВт) и большой ресурсоспособности (от 3 лет непрерывной эксплуатации до 10 лет в перспективе).

Ядерная электрическая установка (ЯЭУ) предназначена для питания электроэнергией аппаратуры космических аппаратов используется принцип непосредственного преобразования тепловой энергии ядерного реактора в электричество в полупроводниковом термоэлектрическом генераторе. Захоронение ЯЭУ после окончания эксплуатации производится переводом на орбиту, где время существования реактора достаточно для распада продуктов деления до безопасного уровня (не менее 300 лет). В случае любых аварий с космическим аппаратом ЯЭУ имеет в своём составе высокоэффективную дополнительную систему радиационной безопасности, использующую аэродинамическое диспергирование реактора до безопасного уровня.

Использование термоэлектрических и термоэмиссионных преобразователей энергии в сочетание с ядерными реакторами позволило создать принципиально новый тип установок, в которых источник тепловой энергии - ядерный реактор и преобразователь тепловой энергии в электрическую были объединены в единый агрегат - реактор-преобразователь.

Типичная ядерная энергетическая установка содержит: реактор на быстрых нейтронах с боковым бериллиевым отражателем, включающим 6 цилиндрических регулирующих стержней, холодильник излучатель; 2 контура теплоносителя (эвтектика натрия - калия), электромагнитный насос, термоэлектрический генератор и приводы регулирующих стержней; теневую радиационную защиту гидрида лития обеспечивающую ослабление ионизирующих излучений реактора до уровня допустимых для приборов и оборудования космического аппарата; - излучатель для сброса тепла в космос со второго контура теплоносителя; приставку с агрегатами системы выброса сборки тепловыделяющих элементов реактора из корпуса реактора. Мощность электрическая - 3 кВт, мощность тепловая - 100 кВт, масса ЯЭУ - 930 кг, загрузка урана 235 - 30 кг.

В 50-х годах в СССР начаты работы по созданию реакторной термоэлектрической энергоустановки «БУК» с малогабаритным реактором на быстрых нейтронах и находящимся вне реактора термоэлектрическим генератором на полупроводниковых элементах. Более 30 установок «БУК» эксплуатировались на космических аппаратах серии «Космос» в течение ряда лет.

В 1964 в Институте ядерной энергии им. И.В.Курчатова запущен первый реактор прямого преобразования тепла в электричество, «Ромашка». Основой является высокотемпературный реактор на быстрых нейтронах, активная зона которого состоит из дикарбида урана и графита. Активная зона реактора (цилиндр) окружена бериллиевым отражателем. Температура в центре активной зоны - 1770°С, на наружной поверхности реактора – 1000°С. На наружной поверхности отражателя находится термоэлектрический преобразователь, состоящий из большого числа кремний-германиевых полупроводниковых пластин, внутренние стороны которых нагреваются теплом, выделяемым реактором, а наружные охлаждаются. Неиспользованное тепло с преобразователя излучается в окружающее пространство ребристым холодильником-излучателем. Тепловая мощность реактора 40 квт. Снимаемая электрическая мощность с термоэлектрического преобразователя 500 вт.

Высокотемпературный ядерный реактор-преобразователь позволяет непосредственно получать электроэнергию без участия каких-либо движущихся рабочих тел и механизмов. В «Ромашке» наиболее полно воплощены идеи реактора прямого преобразования: там нет ничего движущегося. В отличие от американского реактора SNAP-10А там нет теплоносителя и насосов. Американцы вынуждены были отказаться от своего варианта реактора из-за непрочных позиций в области высокотемпературного материаловедения.

Реактор-преобразователь "Ромашка" успешно проработал 15000 часов (вместо ожидаемых 1000 ч.), выработал при этом - 6100 кВт.час электроэнергии. Выполненный комплекс работ с установкой "Ромашка" показал её абсолютную надёжность и
безопасность.

Эффективность работы подобных генераторов можно повысить путём использования вместо термоэлектрического преобразователя энергии плоских модульных термоэмиссионных элементов, располагаемых на границе активной зоны и радиального отражателя.

На базе установки "Ромашка" была создана опытная установка «Гамма» - прототип автономной транспортируемой АЭС «Елена» электрической мощностью до 500 кВт, предназначенной для энергоснабжения отдаленных районов.

Первая в нашей стране космическая ядерная электрическая станции (КАЭС) «БЭС-5» с гомогенным реактором на быстрых нейтронах и термоэлектрическим генератором (ТЭГ) разрабатывалась для электропитания аппаратуры космического аппарата радиолокационной разведки на участке выведения и в течение всего времени активного существования спутника на круговой орбите высотой порядка 260 км. Генерирующая выходная мощность "БЭС-5" 2800 Вт, с ресурсом 1080 часов. 3 октября 1970 осуществлён запуск ЯЭУ «БЭС-5» в составе космического аппарата радиолокационной разведки («Космос-367»). После проведения 9 запусков ЯЭУ "БЭС-5" в 1975 была принята на вооружение ВМФ СССР. Всего к моменту снятия с эксплуатации ЯЭУ «БЭС-5» (1989) была запущена в космос 31 установка.

В процессе эксплуатации установки проводились работы по доработке и модернизации БЭС, связанные с повышением радиационной безопасности, увеличением электрической мощности в конце ресурса до 3 кВт и увеличением ресурса до 6-12 месяцев. Первый запуск модернизированного варианта ЯЭУ был произведён 14 марта 1988 года в составе космического аппарата «Космос-1932».

Табл.2 Радионуклидные термоэлектрические генераторы (РТГ) и блоки обогрева (БО) на полонии-210 и плутонии-238, источник гамма-излучения (ИИ) на тулии-170


Типичным представителем КАЭС, используемых в качестве источников питания мощных радиотехнических спутников (космических радиолокационных станций и телетрансляторов), с прямым преобразованием тепла в электричество, является установка «Бук», которая по сути дела, представляла собой ТЭГ - полупроводниковый преобразователь Иоффе, только вместо керосиновой лампы в нем использовался ядерный реактор. Как обычно, один полупроводниковый спай помещался в холод, а другой - в тепло: между ними пробегал электрический ток. С холодом в космосе все в порядке - он повсюду. Для тепла же годился металлический теплоноситель, что омывал портативный ядерный реактор. Это был быстрый реактор мощностью до 100 кВт. Полная загрузка высокообогащенного урана составляла около 30 кг. Тепло из активной зоны передавалось жидким металлом - эвтектическим сплавом натрия с калием полупроводниковым батареям. Электрическая мощность достигала 5 кВт. Время работы «Бука» - 1-3 месяца. теперь уже в качестве, продолжались до начала перестройки. С 1970 по 1988 год в космос запустили около 30 радиолокационных спутников с ядерно-энергетическими установками "Бук" с полупроводниковыми реакторами-преобразователями. Если установка отказывала, спутник переводили на орбиту длительного существования высотой 1000 км.

Основные достижения отечественной науки и техники в области термоэлектрической технологии для космических миссий связаны с НИОКР по созданию ЯЭУ «Ромашка», КЯЭУ «БУК» и реальным опытом ее эксплуатации в космосе в период 1970-1988 гг. в ходе 32-х запусков.

ЯДЕРНЫЕ ЭНЕРГЕТИЧЕСКИЕ УСТАНОВКИ С ТЕРМОЭМИССИОННЫМИ ПРЕОБРАЗОВАТЕЛЯМИ

В СССР параллельно работам по созданию ЯЭУ с термоэлектрическими генераторами проводились работы по ЯЭУ с термоэмиссионными преобразователями, имеющими более высокие технические характеристики. По сути, здесь используется тот же, что и в полупроводниковом преобразователе принцип, но вместо холодного и горячего спая применяют горячий карбидурановый катод и холодный стальной анод, а между ними находятся легко ионизирующиеся пары цезия. Эффект - электрическая разность потенциалов, то есть натуральная космическая электростанция. Термоэмиссионное преобразование по сравнению с термоэлектрическим позволяет увеличить к.п.д., повысить ресурс и улучшить массогабаритные характеристики энергоустановки и космического аппарата в целом. Принцип термоионного преобразования тепловой энергии в электрическую заключается в том, что раскаленная выделяемым в реакторе теплом металлическая поверхность эффективно испускает ионы, адсорбируемые расположенной с небольшим зазором охлажденной стенкой.

В 1970-71 в СССР была создана термоэмиссионная ядерно-энергетическая установка «Топаз» (Термоэмиссионный Опытный Преобразователь в Активной Зоне), в которой использовался тепловой реактор мощностью до 150 кВт. Полная загрузка урана составляла 31,1 кг 90% урана-235. Вес установки 1250 кг. Основой реактора были тепловыделяющие элементы – «гирлянды». Они представляли собой цепочку термоэлементов: катод - "наперсток" из вольфрама или молибдена, заполненный окисью урана, анод - тонкостенная трубка из ниобия, охлаждаемая жидким натрий-калием. Температура катода достигала 1650oC. Электрическая мощность 10 кВт. «Топазы» обладали кпд теплоэлектрического преобразования 5-10% против 2-4% у прежних реакторов.

Помимо урана-235 перспективен в качестве топлива реакторов космического назначения диоксид плутония-238, благодаря своему очень высокому удельному энерговыделению. В этом случае относительно низкий кпд термоэмиссионного реактора прямого преобразования компенсируется активным энерговыделением плутония-238.

Испытаны два термоэмиссионных реактора-преобразователя на промежуточных нейтронах (без замедлителя) - «Топаз-1» и «Топаз-2» электрической мощностью 5 и 10 квт соответственно. В установке «Топаз» прямое (безмашинное) преобразование энергии осуществляется во встроенных в активную зону малогабаритного теплового реактора электрогенерирующих каналов. Установка «Топаз-1» снабжена тепловым реактором-преобразователем и жидкометаллическим теплоносителем (натрий-калий или литий). Принцип прямого преобразования тепловой энергии в электрическую заключается в нагреве в вакууме катода до высокой температуры при поддержании анода относительно холодным, при этом с поверхности катода «испаряются» (эмиттируют) электроны, которые, пролетев межэлектродный зазор, «конденсируются» на аноде, и при замкнутой наружной цепи по ней идёт электрический ток. Основное преимущество такой установки по сравнению с электромашинными генераторами - отсутствие движущихся частей. Реализация концепции реактора-преобразователя на быстрых нейтронах с литиевым охлаждением в будущем возможно позволяет решить задачу создания установки электрической мощностью 500-1000 кВт и более.

Ядерная энергетическая установка содержит: термоэмиссионный реактор-преобразователь с замедлителем из гидрида циркония и боковым бериллиевым отражателем, включающим поворотные органы регулирования; систему реактора-преобразователя: приводы органов регулирования подачи цезия в электрогенерирующие каналы, скомпонованные в блок, расположенный перед реактором-преобразователем; теневую радиационную защиту из гидрида лития, обеспечивающего ослабление радиационного излучения реактора до уровней, допустимых для приборов космического аппарата; систему отвода неиспользованного тепла от реактора теплоносителем (эвтектика натрия-калия), включающая электромагнитный насос, питаемый электроэнергией от реактор-преобразователя, излучатель, для сброса тепла в космическое пространство и другие агрегаты. Мощность электрическая - 5 кВт, мощность тепловая - 150 кВт, ресурс, включая работу до 1 года на 100 кВт режиме - 7 лет, загрузка урана 235 - 11,5 кг, масса - 980 кг.

Табл.3 Краткая характеристика ЯЭУ «Топаз 1»


Ядерное топливо в Топазе-1 (диоксид урана обогащенный ураном-235) заключено в сердечнике из тугоплавкого материала, служащей катодом (эмиттером) для электронов. Тепло, выделяющееся в результате деления урана в реакторе, разогревает эмиттер до 1500-1800 градусов Цельсия, в результате чего происходит испускание электронов. Попадая на анод (коллектор), электроны обладают достаточной энергией, чтоб во внешней замкнутой цепи между электродами термоэмиссионного преобразователя (эмиттером и коллектором) произвести работу во внешней нагрузке. Межэлектродный зазор составляет несколько десятых долей миллиметра. Пары цезия, вводимые в межэлектродный зазор (МЭЗ), существенно активизируют процесс получения электроэнергии в реакторе. В конструкции энергоустановки реализована расходная цезиевая система, в которой пары цезия прокачивались через МЭЗ для удаления примесей. Прошедшие МЭЗ пары цезия поглощались ловушкой на основе пирографита, а газообразные примеси удалялись в космическое пространство. Цезиевая система имела термостат-генератор паров цезия с электронагревателями, с помощью которых обеспечивалось поддержание заданной температуры наиболее холодной зоны термостата. В генераторе паров цезия применялся ряд устройств, обеспечивающих удержание жидкой фазы в определенном положении и препятствующих её попаданию в парообразный тракт при действии малых перегрузок в космическом полете. В примененной конструкции генератора паров цезия максимальное количество цезия составило 2,5 кг, что при заданном расходе паров, определяемом проводимостью дросселя на выходе из РП, однозначно ограничивало возможный ресурс ЯЭУ. Требование минимизации массы и габаритов приходилось реализовывать с учетом того обстоятельства, что теплоотвод в космическом пространстве возможен лишь посредством излучения за счет использования специальной конструкции холодильника-излучателя. Реализация системы теплоотвода существенно затруднена, поскольку в ней используются агрессивная жидкометаллическая натрий-калиевая эвтектика. К этому добавляются высокие требования к надежности автономного функционирования и ресурсоспособности ЯЭУ в условиях перегрузок при выведении на орбиту, произвольной ориентации и отсутствия сил тяжести при работе на орбите, необходимости обеспечения ядерной и радиационной безопасности в условиях возможных аварий ракет-носителей при выведении КА с ЯЭУ на орбиту, а также обеспечения метеорной безопасности в космическом полёте и т.п. Ядерная электроэнергетическая установка «Топаз» предназначена для питания электроэнергией аппаратуры космических аппаратов военного применения. Использование на спутниках ядерных реакторов позволяет обеспечить стабильное электропитание не зависимо от расположения на орбите.
Ядерная и радиационная безопасность обеспечивается конструкцией ядерного реактора. При любых авариях, включая гипотетические с ракетой-носителем на стартовой позиции и на участке выведения на орбиту, ядерный реактор остается подкритичным. За счет введения блокировок пуск реактора невозможен по достижению орбиты. Блокировка снимается по радиокоманде с Земли только после подтверждения вывода на расчетную орбиту непосредственными траекторными измерениями. Высота орбита выбрана из условия, чтобы существование космического аппарата после прекращения функциональной установки с учетом любых аварийных ситуаций с установкой было достаточно для распада продуктов деления до безопасного уровня. Это время превышает 350 лет. Таким образом обеспечивается гарантированная безопасность населения Земли при использовании установок подобного типа.

ЯЭУ «Топаз-1» разрабатывалась для спутников радиолокационной разведки, «Топаз-2» – для космических аппаратов системы непосредственного телевизионного вещания из космоса. Первый летный образец - спутник «Космос-1818» с установкой «Топаз» вышел на радиационно безопасную стационарную круговую орбиту высотой 800 км 2 февраля 1987 года и безотказно проработал полгода, до исчерпания запасов цезия. Второй спутник – «Космос-1876» был запущен через год. Он отработал на орбите почти в два раза дольше. Успех «Топазов» стимулировал разработку ряда проектов реакторов с термоэмиссионными преобразователями, в частности ядерно-энергетической установки электрической мощностью до 500 кВт на основе реактора с литиевым охлаждением.

На основе ЯЭУ «БЭС» и «Топаз» подготовлен ряд проектов установок с улучшенными характеристиками. Подготовлены технические предложения по термоэлектрической ЯЭУ «Заря-1» для космического аппарата оптико-электронной разведки. ЯЭУ «Заря-1» отличается от «БЭС» уровнем электрической мощности (5,8 кВт против 2,9 кВт) и повышенным ресурсом (4320 часов против 1100 часов). В 1978 создана ЯЭУ «Заря-2» электрической мощностью 24 кВт и ресурсом 10000 часов, а потом и космическая ядерная энергодвигательная установка «Заря-3» электрической мощностью 24,4 кВт и ресурсом 1,15 года. Она предназначалась для создания импульсов тяги коррекции орбиты спутников и энергообеспечения специальной аппаратуры.

Термоэмиссионная космическая ядерная установка «ТОПАЗ 100/40» представляет собой двухрежимную ядерную энергетическую установку (ЯЭУ). Она предназначена для питания электроэнергией электроракетных двигателей (ЭРД) при выводе на высокую (вплоть до геостационарной) орбиты спутников системы спутниковой связи «Космическая звезда» (Space Star) и питания электроэнергией бортовой аппаратуры. Вывод на мощность реактора энергоустановки происходит только при достижении космическим аппаратом радиационно-безопасной орбиты (800 км и выше). Конструкция ЯЭУ удовлетворяет принятым на 47 сессии Генеральной Ассамблеи ОО документа «Принципы, касающиеся использования ядерных источников в космическом пространстве». В стартовом положении ЯЭУ размещена в отсеке космического аппарата диаметром 3,9 метра и длиной 4,0 метра под обтекатель. В орбитальном положении ЯЭУ раздвинута (реактор максимально отдалён от аппаратуры) и имеет длину 16,0 метров и диаметр 4 метра.

Ядерная энергетическая установка содержит: термоэмиссионный реактор-преобразователь с обслуживающими системами: привод органов регулирования, подача рабочего тела (цезий) в электрогенерирующие каналы; теневую радиационную защиту из гидрида лития, обеспечивающую ослабление радиационного излучения реактора до уровня, допустимого для приборов космического аппарата; систему отвода неиспользованного тепла от реактора с жидкометаллическим (эвтектический сплав натрия и калия) теплоносителем, включающую электромагнитный насос, холодильник излучатель, состоящий из 9 панелей на тепловых трубах, для сброса тепла в космическое пространство и другие агрегаты. Мощность электрическая - 40 кВт, мощность электрическая в режиме питания ЭРД - 100 кВт, ресурс, включая работу до 1 года на 100 кВт режиме - 7 лет, масса ЯЭУ - 4400 кг, загрузка урана 235 - 45 кгВо избежание быстрого падения ЯЭУ на Землю спутники по завершении активного существования переводятся на орбиту захоронения высотой около 1000 км, где отработавший реактор должен просуществовать oт 300 до 600 лет. На подобную орбиту переводятся и аварийные спутники. Сделать это, однако, удавалось не всегда. За почти 20 лет запусков было четыре случая падения спутника на Землю: два - в океан и один - на сушу.

Историческое первенство в космических ядерных авариях принадлежит США - в 1964 г. не смог выйти на орбиту американский навигационный спутник с атомным реактором на борту, и этот реактор развалился в атмосфере вместе со спутником на куски.

В СССР первая авария связана с запущенным 18 сентября 1977 4300-килограммовым спутником серии УС-А (псевдоним «Космос-954», параметры орбиты: перигей 259 км, апогей 277 км, наклонение 65 градусов). Спутник входил в состав спутниковой системы морской космической разведки и целеуказания МКРЦ «Легенда», предназначенной для обнаружения кораблей вероятного противника и выдачи данных для применения по ним нашим флотом крылатых ракет. В конце октября 1977 «Космос-954» прекратил регулярные коррекции орбиты, но перевести его на орбиту захоронения не удалось. По последующим сообщениям ТАСС, 6 января 1978 спутник внезапно разгерметизировался, из-за чего бортовые системы вышли из строя. Неуправляемое снижение аппарата под действием верхних слоев атмосферы завершилось 24 января 1978 сходом с орбиты и падением радиоактивных обломков па севере Канады в окрестности Большого Невольничьего озера. Урановые элементы спутника полностью сгорели в атмосфере. На земле нашли лишь остатки бериллиевого отражателя и полупроводниковых батарей. Тем не менее радиоактивный космический мусор оказался разбросанным на северо-западе Канады на площади в несколько тысяч квадратных километров. СССР согласился выплатил Канаде 3 миллиона долларов, составивших 50% стоимости операции «Morning Light» по очистке района падения «Космоса-954».

28 декабря 1982 работавший с 30 августа «Космос-1402» не удалось перевести на орбиту захоронений и он начал неконтролируемое снижение. Конструктивные доработки после предыдущей аварии позволили отделить активную зону от термостойкого корпуса реактора и предотвратить компактное падение обломков. Активная зона вошла в атмосферу 7 февраля 1983 и радиоактивные продукты деления рассеялись над Южной Атлантикой.

В апреле 1988 была утеряна связь с «Космосом-1900», выведенным на орбиту в декабре 1987. В течение пяти месяцев спутник неконтролируемо снижался, и наземные службы не могли дать команду ни на увод реактора на высокую орбиту, ни на отделение активной зоны для более безопасного ее схода с орбиты. К счастью, за пять суток до ожидавшегося входа в атмосферу, 30 сентября 1988 сработала система автоматического увода реактора, включившаяся ввиду исчерпания запаса топлива в системе ориентации спутника.

Продолжением источников питания типа «Топаз» явилась термоэмиссионная ядерная энергетическая установка «Енисей-Топаз». Электрогенерирующий канал - одноэлементный, мощность электрическая - 5 кВт, ресурс - до 3 лет.

Хотя само по себе происшествие не нанесло материального ущерба, его наложение на предшествовавшие катастрофы «Челленджера» и Чернобыльской АЭС привело к протестам против использования ядерных энергоустановок в космосе. Это обстоятельство стало дополнительным фактором, повлиявшим на прекращение полетов спутников с космическими локаторами в 1988. Впрочем, основной причиной отказа от космических локаторов с ядерным энергопитанием стали не призывы мировой общественности и уж тем более, не создаваемые реакторами помехи для гамма-астрономии, а низкие эксплуатационные характеристики.

ПЕРСПЕКТИВЫ РАЗВИТИЯ ЯДЕРНЫХ ЭНЕРГЕТИЧЕСКИХ УСТАНОВОК

Табл. 4 Основные характеристики КЯЭУ «БУК» и «БУК-ТЭМ»

Полная загрузка высокообогащенного урана в «Бук» 30 кг, теплоноситель - жидкий металл - эвтектический сплав натрия с калием. Источник электричества - полупроводниковый преобразователь. Электрическая мощность 5 кВт. В «Топазе» использовался тепловой реактор мощностью 150 кВт. Полная загрузка урана 12 кг. Основой реактора были тепловыделяющие элементы – «гирлянды», представляющие собой цепочку термоэлементов: катод – «наперсток» из вольфрама или молибдена, заполненный окисью урана, анод - тонкостенная трубка из ниобия, охлаждаемая жидким натрий-калием. Температура катода 1650oC, электрическая мощность установки 10 кВт.

С 1970 по 1988 год СССР(Россия) запустил в космос около 30 радиолокационных спутников с ядерно-энергетическими установками «Бук» с полупроводниковыми реакторами-преобразователями и два - с термоэмиссионными установками "Топаз".

В настоящее время к космическим ядерным энергетическим установкам (КЯЭУ) нового поколения предъявляются следующие требования: интеграция ядерной энергетической установки в космическом аппарате, выводимым современными ракетоносителями (типа Протон, Протон-М, Ангара); ядерная и радиационная безопасность, в т.ч. при возможной аварии (на Землю падает «чистый» реактор); транспортный энергетический режим – на высотах выше радиационно-безопасной орбиты 800 км; подкритическое состояние реактора при всех видах аварий; отрицательный температурный коэффициент реактивности при рабочих параметрах; резервирование узлов, подверженных ресурсной деградации; комбинация различных систем преобразования энергии; преимущественная отработка элементов и узлов во внереакторных условиях; возможность продолжительного нахождения в космосе до начала работы ЯЭУ; выходная электрическая мощность 50÷400 кВтЭЛ (при 115÷120 В), ресурс 7-10 (до 20) лет.

В области термоэлектрических устройств в настоящее время в России подготовлен проект перехода от ядерной энергетической установки типа «Бук» к более совершенной «БУК-ТЭМ» (Табл.4).

Опыт работ, проведенных в области термоэлектричества для КЯЭУ позволяет сделать вывод о практической возможности создания ТЭГ на основе Si-Ge ТБ/ТМ радиально-кольцевой геометрии в составе либо чисто термоэлектрических ЯЭУ, либо комбинированных ЯЭУ (термоэмиссия + термоэлектричество) с выходной электрической мощностью теплоэнергогенератора 10-100 кВтЭЛ для космических миссий 21-го века.

Основные направления работ в термоэмиссии после завершения работ по программам создания КЯЭУ «ТОПАЗ» и ЯЭУ «Енисей» связаны с необходимостью радикального увеличения к.п.д. с уровня ~10% до 20-30%, ресурса работы электрогенерирующих каналов (ЭГК) и систем в составе ЯЭУ – с 1-2 лет до 10-20 лет при существенном ограничении массогабаритных характеристик. Выбор концепции термэмиссионного ЭГК и ЯЭУ определяется требованиями решаемой задачи, из которых важнейшими являются ресурс, энергонапряженность, в том числе одно- или двухрежимность (с форсированием электрической мощности), величина выходного напряжения электрического тока, необходимость внереакторного подтверждения ресурса и проверки основных технических решений на стендах с имитационным электронагревом и т.п.

Табл.5 Основные характеристики ЯЭУ «ТОПАЗ» и «ЭЛЬБРУС-400/200»


Сегодня понятно, что термоэмиссия и термоэлектричество как в термоэмиссионных и термоэлектрических установках, так и при их комбинировании (термоэлектричество + термоэмиссия) в КЯЭУ нового поколения имеют несомненную перспективу использования. При этом термоэмиссия имеет несомненные преимущества перед другими статическими преобразователями и известными динамическими преобразователями. Подобные установки могут быть эффективно использованы для решения различных задач в космических миссиях 21-го века.

Атомная энергетическая установка - силовая установка, работающая на энергии цепной реакции деления ядра. Атомную энергетическую установку, которая в основном является модификацией паротурбинной, начали применять на судах в конце 50-х гг. XX в. К энергетической установке судна с атомным двигателем относятся реактор, парогенератор и турбинная установка, приводящая в движение судовой движитель. Реактор - это установка для получения ядерных цепных реакций, во время которых возникает энергия, преобразуемая далее в механическую. В ядерном реакторе созданы такие условия, что число расщеплений ядра за единицу времени является величиной постоянной, т. е. цепная реакция происходит постоянно.

Конструкция и принцип действия ядерного реактора.

1 - стальной корпус; 2 - замедлитель; 3 - отражатель; 4 - защита; 5 - тепловыделяющие элементы; 6 - вход теплоносителя; 7 - выход теплоносителя; 8 - регулирующие стержни.

Ядерное топливо содержит делящийся материал, как правило, уран или плутоний. При расщеплении ядер атомов, которые распадаются на так называемые фрагменты - или на свободные нейтроны высоких энергий, освобождается очень много энергии. Для уменьшения высокой энергии нейтронов служит замедлитель: графит, бериллий или вода. Для того чтобы свести к минимуму возможность потери нейтронов, устанавливают отражатель. Он состоит в основном из бериллия или графита. Во избежание слишком сильного потока нейтронов в реакторе на соответствующей глубине устанавливают регулирующие стержни из поглощающих нейтроны материалов (кадмия, бора, индия). Энергообмен в реакторе происходит с помощью теплоносителей, воды, органических жидкостей, сплавов из легкоплавких металлов и т. д. В настоящее время на судах применяют, как правило, реакторы, охлаждаемые водой под давлением.

Схема атомной энергетической установки с реактором, охлаждаемым водой под давлением.

1 - реактор; 2 - первичная биологическая защита; 3 - вторичная биологическая защита; 4 - парогенератор; 5 - нагревательный змеевик первого контура; 6 - циркуляционный насос первого контура; 7 - турбина высокого давления; 8 - турбина низкого давления; 9 - редуктор; 10 - конденсатор; 11 - насос вторичного контура; 12 - вход морской воды; 13 - выход морской воды.

Эта установка имеет два контура циркуляции. Первый контур - циркуляция воды под высоким давлением. Вода первого контура служит одновременно теплоносителем ядерного реактора и имеет давление приблизительно от 5,8 до 9,8 МПа. Она протекает через реактор и нагревается, например на судах «Отто Хан» (ФРГ) и «Мутсу» (Япония), до 278°С. При этом давление воды противодействует испарению. Горячая вода первого контура, протекая через нагревательный змеевик, отдает свое тепло парогенератору, затем она снова возвращается к реактору. К парогенератору из второго контура низкого давления подается конденсат. Нагреваемая в парогенераторе вода испаряется. Этот пар с относительно низким давлением (например, на американском судне «Саванна» оно составляет 3,14 МПа) служит для питания турбин, которые через редуктор приводят во вращение гребной винт.

Ядерный реактор изолирован от окружающей среды защитным экраном, не пропускающим вредные радиоактивные лучи. Обычно применяются двойные экраны. Первый (первичный) экран окружает реактор и изготовляется из свинцовых пластин с полиэтиленовым покрытием и из бетона. Вторичный экран окружает парогенератор и заключает внутри себя весь первый контур высокого давления. Этот экран в основном изготовляют из бетона толщиной от 500 мм («Отто Хан») до 1095 мм («Мутсу»), а также из свинцовых пластин толщиной 200 мал и полиэтилена толщиной 100 мм. Оба экрана требуют много места и имеют очень большую массу. Например, первичный экран на судне «Саванна» весит 665 т, а вторичный - 2400 т. Наличие таких экранов является большим недостатком атомных энергетических установок. Другим, еще более существенным недостатком, является, несмотря на все защитные меры, опасность заражения окружающей среды как во время нормального функционирования энергетической установки вследствие отходов использованного топлива, выпуска трюмной воды из реакторного отсека и т. д., так и во время случайных аварий судна и атомной энергетической установки.

К неоспоримым преимуществам относятся очень низкий расход топлива и практически неограниченная дальность плавания. Например, судно «Отто Хан» (ФРГ) за три года не израсходовало даже 20 кг урана, в то время как расход топлива обычной паротурбинной энергетической установкой на судне таких размеров составил 40 тыс. т. Дальность плавания японского судна «Мутсу» составляет 145 тыс. миль. Несмотря на эти преимущества, атомные энергетические установки широко применяются только на боевых кораблях. Особенно выгодно их использовать на крупных подводных лодках, которые долгое время могут находиться под водой, так как для получения тепловой энергии в реакторе воздуха не требуется. Кроме того, атомными энергетическими установками оснащаются мощные ледоколы, используемые в северных широтах земного шара.

1 - машинное отделение; 2 - контейнер с реактором; 3 - отсек вспомогательных механизмов; 4 - хранилище отработавших ТВЭЛ.

Принцип действия и устройство энергетических реакторов сводой под давлением.

Атомные энергетические установки (АЭУ). В настоящее время вопрос о широком применении ядерного горю­чего в судовых энергетических установках становится все более актуальным. Интерес к судам с АЭУ особенно возрос в 1973- 1974 гг., когда вследствие мирового энергетического кризиса резко повысились цены на органическое топливо. Основным преимуществом судов с АЭУ является практически неограничен­ная дальность плавания, что очень важно для ледоколов, судов арктического плавания, научно-исследовательских, гидрографи­ческих и пр.

Суточный расход ядерного горючего не превышает нескольких десятков граммов, а тепловыделяющие элементы в реакторе можно менять один раз в два-четыре года. АЭУ на транспортных судах, особенно на тех, которые совершают дальние рейсы с большой скоростью, позволяет значительно повы­сить грузоподъемность судна за счет практически полного отсут­ствия запаса топлива (это дает больший выигрыш, чем потери из-за значительной массы АЭУ). Кроме того, АЭУ может работать без доступа воздуха, что очень важно дляподводных судов. Однако пока потребляемое АЭУ топ­ливо еще очень дорого. Кроме того, на судах с АЭУ приходится пред­усматривать специальную биологи­ческую защиту от радиоактивного излучения, которая утяжеляет уста­новку. Надо полагать, что успехи в развитии атомной техники и в созда­нии новых конструкций и материалов позволят постепенно устранить эти недостатки судовых АЭУ.

Все современные судовые АЭУ используют тепло, выделяющееся при делении ядерного горючего для образования пара, или нагрева газов, поступающих затем в паровую или газовую турбины. Основное звено атомной паропроизводящей установки АППУ реактор, в котором происходит ядерная реакция. В качестве ядерного горючего используют различные расщепляющиеся вещества, у которых процесс деления ядер сопровождается выделением большого количества энергии. К таким веществам относятся изотопы урана, плутония и тория.



Рис. 6.1. Схема ядерного ре­актора.

1- активная зона; 2 -- урановые стержни; 3 - замедлитель; 4 -отражатель; 5 - теплоноситель; 6 - биологическая защита; 7 - тепловой экран; 8 - система ре­гулирования

Наиболее важными элемен­тами судовых реакторов являются (рис 6.2) активная зона, в которой размещены урановые стержни и замедли­тель, необходимый для поглощения энергии выделяющихся при распаде ядер частиц нейтронов; отражатель нейтронов, возвращающий в активную зону часть вылетевших за ее пределы нейтронов; теплоноситель для отбора из активной зоны тепла, выделяющегося при делении урана, и передачи этого тепла дру­гому рабочему телу в теплообменнике; экран биологической за­щиты, препятствующий распространению вредных излучений реактора; система управления и защиты, регулирующая течение реакции в реакторе и прекращающая ее в случае аварийного роста мощности.

Замедлителем в ядерных реакторах служит графит, тяжелая и обычная вода, а теплоносителем - жидкие металлы с низкой температурой плавления (натрий, калий, висмут), газы (гелий, азот, углекислый газ, воздух) или вода.

В судовых АЭУ получили распространение реакторы, у кото­рых и замедлителем и теплоносителем является дистиллированная вода, откуда и произошло их название водо-водяные реакторы. Эти реакторы проще по устройству, компактнее, надежнее в ра­боте, чем другие типы, и дешевле. В зависимости от способа передачи тепловой энергии от реак­тора исполнительному механизму (турбине) различают однокон­турную, двухконтурную и трехконтурную схемы АЭУ.

По одноконтурной схеме (рис. 6.2, а) рабочее вещество - пар - образуется в реакторе, откуда Поступает непосредственно в турбину и из нее через конденсатор с помощью циркуляционного насоса возвращается в реактор.

По двухконтурной схеме (рис. 6.2, б) циркулирующий в реак­торе теплоноситель отдает свое тепло в теплообменнике - паро­генераторе - воде, образующей пар, который поступает в тур­бину. При этом теплоноситель пропускают через реактор и паро­генератор циркуляционным насосом или воздуходувкой, а обра­зующийся в конденсаторе турбины конденсат прокачивают конденсатным насосом через систему подогрева, фильтрации и подпитки и питательным насосом снова подают в парогенератор.

Трехконтурная схема (рис. 6.2, в) представляет собой двух­контурную схему с включенным между первым и вторым конту­рами дополнительным промежуточным контуром.

Одноконтурная схема требует биологической защиты вокруг всего контура, включая и турбину, что усложняет обслуживание и управление и повышает опасность для экипажа. Безопаснее двухконтурная схема, так как здесь второй контур уже не опасен для экипажа. Поэтому на атомных судах почти всегда применяют двухконтурные схемы. Трехконтурные схемы используют в том случае, если теплоноситель в реакторе сильно активируется и его необходимо тщательно отделить от рабочего вещества, для чего и предназначен промежуточный контур.

Рис. 6.2. Тепловые схемы ядерных энергетических установок:

а - одноконтурная; б - двухконтурная; в - трехконтурная.

1 -реактор; 2 - турбина; 3 - конденсатор; 4 - циркуляционный насос; 5 -парогенератор; 6 - конденсатный насос; 7 - система по­догрева фильтрации и подпитки; 8 - питательный насос; 9 - тепло­обменник; 10 - биологическая защита

Принцип действия и устройство энергетических реакторов. На судах с атомными энергетическими установками главным источником энергии является ядерный реактор. Тепло, выделяющееся в процессе деления ядерного горючего, служит для генерации пара, поступающего затем в паровую турбину.

В реакторной установке, как и в обычном паровом котле, имеются насосы, теплообменники и другое вспомогательное оборудование. Особенностью ядерного реактора является его радиоактивное излучение, которое требует специальной защиты обслуживающего персонала.

Безопасность. Вокруг реактора приходится ставить массивную биологическую защиту. Обычные защитные материалы от радиоактивного излучения – бетон, свинец, вода, пластмассы и сталь.

Существует проблема хранения жидких и газообразных радиоактивных отходов. Жидкие отходы хранятся в специальных емкостях, а газообразные поглощаются активированным древесным углем. Затем отходы переправляются на берег на предприятия по их переработке.

Судовые ядерные реакторы. Основными элементами ядерного реактора являются стержни с делящимся веществом (ТВЭЛы), управляющие стержни, охладитель (теплоноситель), замедлитель и отражатель. Эти элементы заключены в герметичный корпус и расположены так, чтобы обеспечить управляемую ядерную реакцию и отвод выделяющегося тепла.

Горючим может быть уран-235, плутоний либо их смесь; эти элементы могут быть химически связаны с иными элементами, быть в жидкой или твердой фазе. Для охлаждения реактора используется тяжелая или легкая вода, жидкие металлы, органические соединения или газы. Теплоноситель может быть использован для передачи тепла другому рабочему телу и производства пара, а может использоваться непосредственно для вращения турбины. Замедлитель служит для уменьшения скорости образующихся нейтронов до значения, наиболее эффективного для реакции деления. Отражатель возвращает в активную зону нейтроны. Замедлителем и отражателем обычно служат тяжелая и легкая вода, жидкие металлы, графит и бериллий.

На всех военно-морских судах, на первом атомном ледоколе «Ленин», на первом грузо-пассажирском судне «Саванна» стоят энергетические установки, выполненные по двухконтурной схеме. В первичном контуре такого реактора вода находится под давлением до 13 МПа и поэтому не вскипает при температуре 270 0 С, обычной для тракта охлаждения реактора. Вода, нагретая в первичном контуре, служит теплоносителем для производства пара во вторичном контуре.

В первичном контуре могут использоваться и жидкие металлы. Такая схема применена на подводной лодке ВМС США «Си Вулф», где теплоносителем является смесь жидкого натрия с жидким калием. Давление в системе такой схемы сравнительно невелико.

Это же преимущество можно реализовать, используя в качестве теплоносителя парафинообразные органические вещества – дифенилы и трифенилы. В первом случае недостатком является проблема коррозии, а во втором – образование смолистых отложений.

Существуют одноконтурные схемы, в которых рабочее тело, нагретое в реакторе, циркулирует между ним и главным двигателем. По одноконтурной схеме работают газоохлаждаемые реакторы. Рабочим телом служит газ, например, гелий, который нагревается в реакторе, а затем вращает газовую турбину.

Защита. Ее главная функция – обеспечить защиту экипажа и оборудования от излучения, испускаемого реактором и другими элементами, имеющими контакт с радиоактивными веществами. Это излучение делится на две категории: нейтроны, выделяющиеся при делении ядер, и гамма-излучение, возникающее в активной зоне и в активированных материалах.

В общем случае на судах имеются две защитные оболочки. Первая расположена непосредственно вокруг корпуса реактора. Вторичная (биологическая) защита охватывает парогенераторное оборудование, систему очистки и емкости для отходов. Первичная защита поглощает большую часть нейтронов и гамма-излучение реактора. Это снижает радиоактивность вспомогательного оборудования реактора.

Первичная защита может представлять собой двухоболочечный герметичный резервуар с пространством между оболочками, заполненным водой, и наружным свинцовым экраном толщиной от 2 до 10 см. Вода поглощает большую часть нейтронов, а гамма-излучение частично поглощается стенками корпуса, водой и свинцом.

Основная функция вторичной защиты – снизить излучение радиоактивного изотопа азота 16N, который образуется в теплоносителе, прошедшем через реактор. Для вторичной защиты используются емкости с водой, бетон, свинец и полиэтилен.

Экономичность судов с атомными энергетическими установками. Для боевых кораблей стоимость постройки и эксплуатационные расходы имеют меньшее значение, чем преимущества почти неограниченной дальности плавания, большей энерговооруженности и скорости кораблей, компактности установки и сокращения обслуживающего персонала. Эти достоинства атомных энергетических установок обусловили их широкое применение на подводных лодках. Оправданно и применение энергии атома на ледоколах.

Вопросы для самопроверки:

Что является источником энергии для АЭУ?

Что собой представляет двухоболочечный герметичный резервуар?

Выбор редакции
Простой рецепт салата с блинами из крахмала пошагово с фото. Если вам по вкусу простые в приготовлении блюда с минимумом ингредиентов,...

Дорогие поварята и гости! Предлагаю вам рецепт вареников с картошкой и мариноваными опятами. Надеюсь, что вам понравится это сочетание...

– его часто готовят и в будни, и в праздники. При этом абсолютно незаслуженно обходят стороной другие варианты для паштетной основы. А...

Описание Снова собираетесь варить сосиски и жарить картошку на ужин? Погодите! Сейчас мы с Вами в два счёта соорудим из этих продуктов...
Есть такие мясные блюда, которые знают абсолютно все, потому что они завоевали настолько большую популярность, что их едят и в будни, и...
Бежать в магазин за хлебом после тяжелого трудового дня лень, особенно если погода совсем никудышная. В таких случаях я вспоминаю о...
Дорогие друзья, сегодня у меня для вас подготовлен замечательный рецепт. Это очень простое, но в то же время красивое и сытное блюдо,...
Берусь утверждать, что классический манник на кефире - самый простой десертный пирог в русской кухне. Вариаций приготовления у нашего...
Легкий рецепт пирога должен обязательно храниться в кулинарных книгах всех хозяек. Ведь не всегда есть возможность пойти в магазин и...