Фундамент и глубина промерзания грунта. Возведение фундамента заложенного на глубину промерзания почвы. Опыт применения теплоизоляционных мероприятии в практике строительства


Вопрос глубины заложения актуален для любого типа фундамента под дом. Правильный выбор этой величины позволит обеспечить прочность и надежность конструкции (при соблюдении технологии строительства). Глубина заложения основания фундамента должна назначаться в строгом соответствии с нормативной документацией.

Согласно пункту 12.2 СП 50-101-2004 глубина требуемого заложения фундамента любого дома зависит от:

  • назначения объекта, его конструктивных решений и нагрузок от вышележащих элементов;
  • глубины закладки в грунте инженерных коммуникаций дома;
  • рельефа участка и планировочных отметок;
  • характеристик грунта основания;
  • климатических особенностей местности строительства.

Если сказать проще, то для частного строительства минимальная глубина, которая требуется для заложения подошвы фундамента в почвах определяется следующими факторами:

  • тип фундамента;
  • тип грунта;
  • наличие или отсутствие подвала;
  • уровень расположения в почве грунтовых вод (УГВ);
  • глубина промерзания почвы в зимний период.

Отметку подошвы при наличии подвальных или цокольных помещений принимают на 30-50 см ниже отметки пола. Фундамент должен быть заглублен так, чтобы до отметки уровня подземных вод оставалось не менее 50 см.

Глубина промерзания грунта учитывается для столбчатых и ленточных фундаментов. Плиты обычно укладываются выше отметки замерзания, а сваи опираются существенно ниже (расчет длины производят по несущей способности).

Глубину заложения в зависимости от промерзания

Промерзание почвы опасно тем, что при наличии воды в ней, она расширяется, превращаясь в лед. Происходят смещения, которые могут привести к повреждениям фундамента. Если опереть ленту или столбы без проведения специальных мероприятий на неустойчивый пучинистый грунт, деформирующийся в зимний период, последствия будут плачевными.

Прежде чем копать котлован или траншею, определяют нормативную глубину на которую промерзает грунт. Для частного домостроения можно руководствоваться усредненным значением, но если требуется определить точную нормативную величину, то вычисления производят по формуле 5.3 СП «Основания зданий и сооружений».

Если нет желания подробно высчитывать, какая должна быть минимальная глубина заложения, которая необходима для фундамента, берут уже посчитанные значения промерзания из таблицы представленной ниже в зависимости от региона строительства и типа грунта. Раньше глубину промерзания можно было также определить по картам СНиП «Строительная климатология и геофизика», но после редактуры эти карты из актуализированного издания (СП) убрали. СНиП можно использовать в справочных целях. Таблица представлена для некоторых городов России.

Город Строительство на
крупнообломочном грунте песчаном грунте (средней или крупной фракции) песчаном грунте (пылеватый или мелкий), супесях Глинистых и суглинистых основаниях
Архангельск 231 см 204 см 190 см 156 см
Белгород 159 см 140 см 131 см 108 см
Владивосток 199 см 175 см 164 см 134 см
Волгоград 145 см 128 см 119 см 98 см
Воркута 346 см 305 см 285 см 234 см
Екатеринбург 231 см 204 см 191 см 157 см
Иваново 213 см 188 см 175 см 144 см
Иркутск 274 см 241 см 225 см 185 см
Калининград 71 см 62 см 58 см 48 см
Кемерово 274 см 241 см 225 см 185 см
Краснодар 15 см 13 см 13 см 10 см
Липецк 195 см 172 см 160 см 132 см
Магадан 295 см 261 см 243 см 200 см
Москва 163 см 144 см 134 см 110 см
Оренбург 225 см 198 см 185 см 152 см
Петрозаводск 196 см 173 см 161 см 132 см
Ростов-на-Дону 97 см 86 см 80 см 66 см
Самара 228 см 201 см 188 см 154 см
Санкт-Петербург 145 см 128 см 120 см 98 см
Улан-Удэ 306 см 270 см 252 см 207 см
Хабаровск 281 см 248 см 231 см 190 см

Значения для городов, не вошедших в таблицу, можно найти по картам из СНиП интерполяцией или взять величину для ближайшего пункта. Тип грунта определяют бурением или рытьем шурфов. Предварительно нужно ознакомиться с ГОСТ «Грунты. Классификация».

Нормативная глубина промерзания почвы в европейской части России. Ранее эти карты были в нормативной документации, но сейчас их можно использовать только для справки.

Расчетную глубину промерзания почвы вычисляют, умножив нормативную на поправочный коэффициент, приведенный в таблице 5.2 СП «Основания зданий и сооружений».

Конструктивное решение дома Коэффициент в зависимости от расчетной температуры воздуха в объемах (°С), примыкающих к фундаменту*
0 5 10 15 >20
Без подвала с полами устроенными по грунту 0,9 0,8 0,7 0,6 0,5
Без подвала с полами устроенными по грунту на лагах 1,0 0,9 0,8 0,7 0,6
Без подвала с полами устроенными на утепленном цокольном перекрытии 1,0 1,0 0,9 0,8 0,7
С подвалом 0,8 0,7 0,6 0,5 0,4

*Для не отапливаемых подвалов принимают значение +5 °С, для жилых помещений по ГОСТ «Здания жилые и общественные» — +20 °С.

Глубина заложения основания под дом принимается не выше глубины промерзания (при отсутствии дополнительных мероприятий).

Зависимость от расположения грунтовых вод

Перед тем как копать грунт, необходимо также определить глубину расположения в почве грунтовых вод, поскольку она существенно влияет на глубину, необходимую для заложения, и зависимость ее от промерзания. Какой должна быть минимальная величина заглубления определяют по таблице 5.3 СП «Основания и фундаменты».

Грунты, на которые выполняется опирание подошвы Глубина заложения для подошвы
если грунтовые воды расположены на расстоянии менее, чем 2 м от подошвы фундамента если грунтовые воды расположены на 2 и более метра ниже подошвы опоры под здание
Крупнообломочные и скальные породы, песчаный грунт (гравелистый, крупной и средней фракции) Не зависит от промерзания Не зависит от промерзания
Песчаный грунт (мелкий и пылеватый) Зависит, принимается не менее глубины промерзания
Супеси
Глинистые и суглинистые основания, крупнообломочные породы с пылеватым заполнителем Зависит, принимается не менее 1/2 глубины промерзания

Совет! Строить дом на мелком песчаном или пылеватом основании не рекомендуется. Для предотвращения проблем грунт с плохими эксплуатационными характеристиками заменяют на другой более прочный.

Измерять УГВ следует в весенний период, когда почва сильнее всего насыщена влагой. Для изучения лучше выбрать несколько точек, одну из них в самой нижней части участка. Расстояние от подошвы до УГВ должно быть не менее 50 см.

Зависимость от типа фундамента

Глубина закладки фундамента определяется также в зависимости от выбранного конструктивного решения основания под дом. Рекомендации можно свести в одну таблицу.

Кроме того, фундаменты могут быть:

  • заглубленный.

В основном это относится к столбчатым и ленточным основаниям. Но также применимо для плит (чаще плиты делают мелкозаглубленными или незаглубленными).

Мелкозаглубленные фундаменты

Этот тип фундамента подходит для применения в следующих случаях:

  • строительство легкого дома без подвала или цоколя;
  • высокий уровень расположения грунтовых вод (но более 1 метра от поверхности земли);
  • достаточно хорошие прочностные характеристики грунта основания.

Схема утепленного мелкозаглубленного ленточного фундамента

При строительстве такого основания не придется глубоко копать землю, что позволяет снизить трудовые и временные затраты. Минимальная при условно непучинистых грунтах (песчаный, крупнообломочный) может быть следующая:

  • при глубине промерзания до 3 м — 0,5 м;
  • до 3 м — 0,75 м;
  • более 3 м — 1,0 м.

Для предотвращения повреждений конструкции силами морозного пучения и водой, необходимо провести следующие мероприятия:

  1. Гидроизоляция . Как и любой другой фундамент, мелкозаглубленный требует надежной защиты от влаги. Отмостка защищает конструкцию от дождевой и талой воды. На вертикальную часть фундамента по всей высоте наносится битумная мастика или наклеиваются рулонные гидроизоляционные материалы (линокром, гидроизол).
  2. Утепление фундамента по высоте и устройство теплой отмостки. В качестве теплоизоляционного материала можно применять экструдированный пенополистирол (пеноплекс). Толщина утеплителя подбирается теплотехническим расчетом. Для большинства регионов страны потребуется уложить 100 мм пеноплекса. В качестве теплоизоляции нельзя применять минеральную вату. Утеплитель укладывают снаружи по всей высоте и под бетонную или асфальтовую отмостку.
  3. Песчаная подушка . Она предотвращает появление морозного пучения. Укладывается из песка средней или крупной фракции с послойным уплотнением. Толщина подушки зависит от фактических прочностных характеристик грунта, в среднем составляет 30-50 см.
  4. Отвод грунтовых и дождевых вод от конструкции. Эту функцию берут на себя и ливневая канализация. Даже при достаточно низком уровне расположения грунтовых вод эти мероприятия необходимы, поскольку в период дождей или таяния снега, почва сильно насыщена влагой. Если допустить одновременное воздействие воды и низких температур на фундамент, последствия могут быть необратимы. Наиболее распространенный тип дренажа — пристенный. Труба с отверстиями укладывается в слой гравия, обернутого геотекстилем. Максимальное расстояние от дренажной трубы до фундамента — 1 метр. Глубина заложения — на 30-50 см ниже подошвы фундамента.

В случае мелкозаглубленных фундаментных плит современным решением станет (УШП). Это основание, которое размещает в себе систему теплых полов и некоторые инженерные коммуникации. Для изготовления используется несъемная опалубка из пенополистирола, которая в последствии играет роль утеплителя.

Глубина заложения для фундамента — один из решающих факторов, влияющих на долговечность и надежность фундамента. Важно учитывать все требования, а при невозможности их выполнения провести необходимые мероприятия по защите конструкции.

Совет! Если вам нужны подрядчики, есть очень удобный сервис по их подбору. Просто отправьте в форме ниже подробное описание работ которые нужно выполнить и к вам на почту придут предложения с ценами от строительных бригад и фирм. Вы сможете посмотреть отзывы о каждой из них и фотографии с примерами работ. Это БЕСПЛАТНО и ни к чему не обязывает.

Глубина заложения фундамента — проектируемая величина, которая зависит от типа здания или сооружения, климатической зоны, грунтов на участке и уровня залегания подземных вод. На эту величину также оказывает влияние конструкция здания (с подвалом или без), принцип его использования (с отоплением или без), этажность и масса.

Если говорить предметно, это та величина, на которую нужно будет закопать фундамент, для того чтобы он обеспечивал стабильную опору для сооружения. Бывают они двух видов:

Согласно нормам строительства для того чтобы противостоять силам морозного пучения, подошву необходимо заглублять на 15-20 см ниже уровня промерзания для грунта. При выполнении этого условия фундамент называют «глубокого заложения» или «заглубленный».

При глубине промерзания больше 2 метров проведение земляных работ имеет очень большие объемы, велик также расход материалов и очень высока цена. В этом случае рассматривают другие типы фундаментов — свайные или , а также возможность заложения выше нормативной точки промерзания. Но это возможно только при наличии грунтов с нормальной несущей способностью, обязательном утеплении цоколя и фундамента, а также при устройстве утепленной отмостки. В этом случае глубина заложения уменьшается в разы и обычно составляет менее метра.

Иногда фундамент заливают прямо на поверхности. Это — вариант для хозпостроек, причем, скорее всего из древесины. Только она в таких условиях способна компенсировать возникающие перекосы.

Предварительные изыскания

Перед началом планирования дома, вы должны решить, в каком месту участка хотите поставить дом. Если геологические исследования уже есть, учитывайте их результаты: чтобы меньше было проблем с фундаментом, имел он минимальную стоимость, желательно выбрать самый «сухой» участок: там, где грунтовые воды находятся как можно ниже.

Далее в выбранном месте проводят геологические исследования почвы. Для этого бурят шурфы на глубину от 10 до 40 метров: зависит от строения пластов и планируемой массы здания. Скважин делают как минимум, пять: в тех, точках, где планируются углы и посередине.

Средняя стоимость такого исследования — порядка 1000 $. Если стройка планируется масштабная, сумма не сильно отразится на бюджете (средняя стоимость дома 80-100 тыс. долларов), а уберечь может от многих проблем. Так что в этом случае заказывайте исследование у профессионалов. Если же поставить хотите небольшую постройку — небольшой дом, дачу, баню, беседку или площадку с мангалом, то вполне можно сделать исследования самостоятельно.

Исследуем геологию своими руками

Для проверки геологического строения грунтов своими руками вооружаемся лопатой. Во всех пяти точках — под углами будущего строения и в середине — придется копать глубокие ямы. Размер: метр на метр, глубина — не менее 2,5 м. Стенки делаем ровные (хотя бы относительно). Выкопав яму, берем рулетку и листок бумаги, замеряем и записываем слои.

Что можно увидеть в разрезе:


Часто сложности возникают при попытках различить глиносодержащие грунты. Иногда достаточно только на них посмотреть: если преобладает песок и имеются вкрапления глины — перед вам супесь. Если преобладает глина, но есть и песок — это суглинок. Ну а глина не содержит никаких вкраплений, копается тяжело.

Есть еще один метод, который поможет вам удостоверится насколько правильно вы определили грунт. Для этого из увлаженного грунта скатывают руками валик (между ладонями, как когда-то в детском саду) и сгибают его в бублик. Если все рассыпалось — это малопластичный суглинок, если развалилось на куски — пластичный суглинок, если осталось целым — глина.

Определившись с тем, какие грунты у вас находятся на выбранном участке, можно приступать к выбору типа фундамента.

Глубина заложения фундамента в зависимости от уровня грунтовых вод

Все особенности проектирования описаны в СНиП 2.02.01-83*. Обобщенно все можно свести к следующим рекомендациям:


Как видите, в основном уровень заложения фундамента фундамента определяется наличием подземных вод и тем, насколько сильно промерзают грунты в регионе. Именно морозное пучение становится причиной проблем с фундаментами (или изменение уровня грунтовых вод).

Глубина промерзания грунтов

Чтобы примерно определить до какого уровня промерзают грунты в вашем регионе, достаточно взглянуть на расположенную ниже карту.

По этой карте можно примерно определить уровень промерзания грунтов в регионе (чтобы увеличить размер картинки, щелкните по ней правой клавишей мышки)

Но это — усредненные данные, так что для конкретной точки определить значение можно с очень большой погрешностью. Для пытливых умов приведем методику расчета глубины промерзания грунта в любой местности. Вам нужно будет знать только средние температуры за зимние месяцы (те, в которых среднемесячная температура имеет отрицательные значения). Можете посчитать сами, формула и пример расчета выложены ниже.

D fn — глубина промерзания в данном регионе,

Do — коэффициент, учитывающий типы грунта:

  • для крупнообломочных грунтов он равен 0,34;
  • для песков с хорошей несущей способностью 0,3;
  • для сыпучих песков 0,28;
  • для глин и суглинков он равен 0,23;

M t — сумма среднемесячных отрицательных температур за зиму в вашем районе. Находите статистику службы метрологии по вашему региону. Выбираете месяца, в которых среднемесячная температура ниже нуля, складываете их, находите квадратный корень (есть функция на любом калькуляторе). Результат подставляете в формулу.

Например , собираемся строиться на глине. Средние зимние температуры в регионе: -2°C, -12°C, -15°C, -10C, -4°C.

Расчет промерзания грунта будет таким:

  1. M t =2+12+15+10+4=43, находим квадратный корень из 43, он равен 6,6;
  2. D fn = 0,23*6,6= 1,52 м.

Получили, что расчетная глубина промерзания по заданным параметрам: 1,52 м. Это еще не все, учесть нужно будет ли отопление, и, если будет, какие температуры будут поддерживаться в нем.

Если здание неотапливаемое (баня, дача, стройка будет идти несколько лет), применяют повышающий коэффициент 1,1, который создаст запас прочности. В этом случае глубина заложения фундамента 1,52 м * 1,1 = 1,7 м.

Если здание будет отапливаться, грунт тоже будет получать порцию своего тепла и промерзать будет меньше. Потому при наличии отопления коэффициенты понижающие. Их можно взять из таблицы.

Коэффициенты, учитывающие наличие отопления в здании. Получается, чем теплее в доме, тем на меньшую глубину нужно заглублять фундамент (чтобы увеличить размер картинки, щелкните по ней правой клавишей мышки)

Итак, если в помещениях будет постоянно поддерживаться температура выше +20°С, полы с утеплением, то глубина заложения фундамента будет 1,52 м * 0,7 = 1,064 м. Это уже меньшие затраты, чем углубляться на 1,52 м.

В таблицах и на картах приведен средний уровень за последние 10 лет. Вообще, наверное, в расчетах стоит использовать данные за самую холодную зиму, которая была за последние 10 лет. Аномально холодные и бесснежные зимы бывают примерно с такой периодичностью. И при расчетах желательно ориентироваться на них. Ведь вас мало успокоит, если отстояв 9 лет, на 10-й ваш фундамент даст трещину из-за слишком холодной зимы.

На какую глубину копать фундамент

Вооружившись этими цифрами и результатами исследования участка, нужно подобрать несколько вариантов фундаментов. Самые популярные — и столбчатый или свайный. Большинство специалистов сходится во мнении, что при нормальной несущей способности грунта их подошва должна находиться на 15-20 см ниже глубины промерзания. Как ее посчитать, мы рассказали выше.

Глубина заложения фундамента — это уровень, на который необходимо углубить фундамент

  • Опираться подошва должна на грунт с хорошей несущей способностью.
  • Фундамент должен погружаться в несущий слой минимум на 10-15 см.
  • Желательно чтобы грунтовые воды располагались ниже. В противном случае необходимо принимать меры по отведению воды или понижению их уровня, а это требует очень больших средств.
  • Если несущий грунт находится слишком глубоко, стоит рассмотреть вариант свайного фундамента.

Выбрав несколько типов фундамента, определив для них глубину заложения, проводят ориентировочный подсчет стоимости каждого. Выбирают тот, который будет экономичнее.

Еще обратите внимание, что для уменьшения глубины заложения фундамента можно применять утепленную у. При строительстве ленточного фундамента мелкого заложения отмостка обязательна.

Мелкозаглубленный фундамент

Иногда фундамент глубокого заложения строит очень дорого. Тогда рассматривают свайный (свайно-ростверковый) или фундаменты мелкого заложения (мелкозаглубленные). Их еще называют «плавающими». Их только два вида — это монолитная плита и лента.

Плитный фундамент считается самым надежным и легко предсказуемым. У него такая конструкция, что она может получить значительные повреждения только при грубых просчетах при проектировании. Тем не менее, и его можно испортить.

Тем не менее, застройщики плитные фундаменты не любят: они считаются дорогими. На них уходит много материала (в основном арматуры) и времени (на вязку той же арматуры). Но иногда плитный фундамент получается дешевле ленточного глубокого заложения или даже свайного. Так что не сбрасывайте его сразу со счетов. Он бывает оптимальным, если строить хотят тяжелое здание на пучнистых или сыпучих грунтах.

Мелкозаглубленная лента может иметь глубину от 60 см. При этом она должна опираться на грунт с нормальной несущей способностью. Если глубина плодородного слоя больше, то глубина заложения ленточного фундамента увеличивается.

С ленточными фундаментами мелкого заложения под легкие здания все очень просто: они работают хорошо. Комбинация со срубом из бревна или бруса — это экономный и в то же время надежный вариант. Если и случаются перегибы ленты, то упругая древесина отлично с ними справляется. Почти также хорошо себя на такой основе чувствует себя каркасный дом.

Более внимательно нужно просчитывать если на мелкозаглубленном ленточном фундаменте собираются строить задние из легких строительных блоков (газобетона, пенобетона, и т.п.). Они на изменения геометрии реагируют не самым лучшим образом. Тут нужна консультация опытного и, обязательно, компетентного специалиста с большим опытом.

А вот под тяжелый дом мелокзаглубленный ленточный фундамент ставить невыгодно. Чтобы передать всю нагрузку, его нужно делать очень широким. В этом случае, скорее всего, дешевле будет плитный.

Как работает мелкозаглубленый фундамент

Этот тип используется тогда, когда бороться с силами пучения слишком дорого и не имеет смысла. В случае с фундаментами мелкого заложения с ними и не борются. Их, можно сказать, игнорируют. Просто делают так, что фундамент и дом поднимаются и опускаются вместе с вспучившимся грунтом. Потому их еще называют «плавающими».

Все что при этом необходимо — обеспечить стабильное положение и жесткую связь всех частей фундамента и элементов дома. А для этого нужен правильный расчет.

Точность расчетов при закладке является залогом долговечности и надежности постройки. Одна из основных величин – глубина заложения , расчётная величина оказывающая влияние на проектные работы.

От чего зависит глубина закладки?

К факторам, влияющим на глубину закладки основания, относятся :

  • Уровень подземных вод;
  • Состав грунта;
  • Уровень промерзания почвы;

Уровень подземных вод

Основание ленточного фундамента должно располагаться над уровнем залегания подземных вод минимум на 0,5 м . Более близкое расположение затруднит обустройство цокольного этажа и , кроме того, фундамент будет постоянно отсыревать и разрушаться под воздействием влаги.

Если глубина залегания грунтовых вод 2 м и меньше, дополнительно потребуется устройство дренажа . Если уровень подземных вод больше 2 м , на глубину заложения фундамента это не влияет .

Чтобы самостоятельно определить на участке, нужно сделать при помощи садового бура несколько скважин глубиной от 2 до 2,5 метров . Самое оптимальное время для этого – ранняя весна, когда вода поднимается до максимальной отметки после таяния снега.

Через 2-3 дня можно выполнить замеры в скважинах и узнать, насколько высоко проходит водоносный слой. Если по прошествии этого времени дно и стенки остались сухими, подземные воды учитывать при закладке фундамента не нужно.

Внимание! Ориентироваться по уровню грунтовых вод на соседних участках не следует, поскольку водоносный слой располагается неравномерно.

Тип грунта

Плотность и состав почвы имеют первостепенное значение при расчетах, ведь от этого зависит степень просадки фундамента и его прочность. Все грунты делят на следующие типы :

Какой бетон использовать для ленточного фундамента:

  • Скалистый . Скалистый грунт не подвергается пучению, не оседает, не накапливает влагу. Ленточный и на таких грунтах заглубления не требует;
  • Крупнообломочный . Крупнообломочный тип почвы состоит из гравия, камней и щебня, а пустоты между ними заполняет глина или песок. В этом случае минимальная глубина закладки составляет 45-50 см ;
  • Глинистый . Глинистые почвы относятся к пучинистым; они глубоко промерзают, долго удерживают влагу, дают неравномерную усадку. Глубина заложения на глинистом грунте не должна быть меньше 75 см ;
  • Песчаный . Песчаный грунт отличается повышенной подвижностью, поэтому при закладке фундамента углубление производят до твердой почвы. Максимальное значение равняется 2,5 м;
  • Чернозем . Чернозем для строительства непригоден, а потому при закладке фундамента слой чернозема обязательно снимают до твердого основания.

Уровень промерзания

При низком залегании водоносного слоя глубина закладки фундамента равна ½ значения промерзания, но только на слабопучинистых и твердых грунтах. То есть, если земля промерзает на глубину 1,5 м , траншею под фундамент роют на глубину 75 см .

На пучинистых почвах глубина закладки должна быть на 20-30 см ниже уровня промерзания. Недостаточно заглубленный фундамент деформируется под воздействием силы пучения, на нем появляются трещины, затем происходит разрушение конструкции. Правильно определить глубину промерзания почвы в отдельном регионе поможет таблица :

Город Суглинки, глины Мелкие пески Средние и крупные пески Каменистый грунт
Москва 1,35 1,64 1,76 2,00
Владимир 1,44 1,75 1,82 2,12
Тверь 1,37 1,67 1,79 2,03
Калуга, Тула 1,34 1,63 1,75 1,98
Рязань 1,41 1,72 1, 84 2,09
Ярославль 1,48 1,80 1,93 2,19
Вологда 1,50 1,82 1,95 2,21
Нижний новгород, Самара 1,49 1,81 1,94 2,20
Санкт-Петербург, Псков 1,16 1,41 1,51 1,71
Новгород 1,22 1,49 1,60 1,82
Ижевск, Казань, Ульяновск 1,70 1,76
Тобольск, Петропавловск 2,10 2,20
Уфа, Оренбург 1,80 1,98
Ростов-на-Дону, Астрахань 0,8 0,88
Пенза 1,40 1,54
Брянск, Орел 1,00 1,10
Екатеринбург 1,80 1,98
Липецк 1,20 1,32
Новосибирск 2,20 2,42
Омск 2,00 2,20
Сургут 2,40 2,64

Совет! Утепление фундамента позволит уменьшить глубину заложения и, соответственно, снизить затраты на строительство.

Нагрузка от здания

Вес постройки также влияет на глубину закладки фундамента. Чем больше нагрузка, тем больше заглубляют основание. Для легких сооружений в виде , каркасных одноэтажных домов и бань средняя глубина закладки составляет 50 см .

Двухэтажные дома из бруса или пеноблоков требуют заглубления фундамента минимум на 1,5 м , для кирпичных строений (например, для строительства ) этот показатель увеличивают до 2 м . Но это касается только пучинистых и рыхлых грунтов, а на плотных твердых почвах закладка основания производится на меньшей глубине.

Чтобы нагрузка соответствовала несущей способности почвы, следует сложить удельный вес фундамента, стен дома, перекрытий, мебели, коммуникаций, а также временные нагрузки от ветра и снега. Если суммарная нагрузка оказалась больше допустимой, необходимо увеличить ширину ленты фундамента.

Примерные расчеты заглубления фундамента

Двухэтажный дом

Глубину заложения фундамента под малоэтажные строения высчитывают следующим образом: умножают количество этажей на 0,8 . То есть, для двухэтажного дома эта величина равняется 1,6 м .


Далее необходимо учесть характеристики почвы, расположение водоносного слоя и глубину промерзания. Если почва достаточно плотная, не пучинистая, грунтовые воды проходят ниже 2 метров , закладка фундамента выполняется на расчетной глубине, то есть, 1,6 м . На глинистом или подвижном грунте заглубление увеличивают до 2 и более метров.

Как сделать деревянную опалубку для ленточного фундамента:

Одноэтажный дом

Вычислить глубину закладки основания для жилого одноэтажного дома можно по формуле:
Hp=m*tm*Hh

Hh – уровень промерзания грунта, m – коэффициент условий работы (равняется 1,1 ), tm – коэффициент теплового воздействия на грунт (равняется 0,7-1 ).

Например, почва промерзает на глубину 1,7 м , а коэффициент теплового воздействия равен 0,7 . Выполнив расчет по формуле, получаем глубину закладки :
1,1 х 0,7 х 1,7 = 1,3 м

То есть, на плотном грунте фундамент под одноэтажный дом должен закладываться на глубину 1,3 м . При этом общая нагрузка должна соответствовать той, которую может выдержать грунт:

  • Супеси – 2-3 кг/см2 ;
  • Гравелистый грунт – 3,5-4,5 кг/см2 ;
  • Глина – 3-6 кг/см2 ;
  • Крупнообломочный грунт – 5-6 кг/см2 .

Дом из пеноблоков

Пеноблок легче кирпича примерно вполовину, поэтому нагрузка на основание будет меньше. На твердых почвах под дом из пеноблока делают , при условии, что подвального помещения не будет .

Если строительство будет на участке с пучинистой почвой и низким уровнем подземных вод, необходимо ориентироваться по линии промерзания – заглубление фундамента выполняют на 30 см ниже этого уровня, как и для кирпичных домов.

Деревянный дом

Деревянные дома чаще всего возводят на мелкозаглубленных фундаментах высотой 50-70 см . Если предполагается строительство подвальных помещений, подземная часть основания углубляется до уровня промерзания + 30 см , надземная равняется 20-40 см .

Видео-инструкция по расчёту глубины заложения фундамента демонстрирует это видео :


Fatal error : Cannot redeclare remove_comment_fields() (previously declared in /var/www/6sotok-dom/data/www/сайт/wp-content/plugins/f-seo-common/f-seo-common.php:600) in /var/www/6sotok-dom/data/www/сайт/wp-content/plugins/modesco-comments/template/comment.php on line 107

Все документы, представленные в каталоге, не являются их официальным изданием и предназначены исключительно для ознакомительных целей. Электронные копии этих документов могут распространяться без всяких ограничений. Вы можете размещать информацию с этого сайта на любом другом сайте.

ОРДЕНА ТРУДОВОГО КРАСНОГО ЗНАМЕНИ
НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ ОСНОВАНИЙ И ПОДЗЕМНЫХ СООРУЖЕНИЙ ИМ. Н. М. ГЕРСЕВАНОВА
(НИИОСП ИМ. Н. М. ГЕРСЕВАНОВА) ГОССТРОЯ СССР

РУКОВОДСТВО
ПО ПРОЕКТИРОВАНИЮ ОСНОВАНИЙ И ФУНДАМЕНТОВ НА ПУЧИНИСТЫХ ГРУНТАХ

МОСКВА СТРОЙИЗДАТ 1979

Предназначено для инженерно-технических работников проектных и строительных организаций.

ПРЕДИСЛОВИЕ

Действие сил морозного пучения грунтов и выпучивания фундаментов ухудшает условия эксплуатации и укорачивает сроки службы зданий и сооружений, вызывает их повреждения и деформации конструктивных элементов, что приводит к большим ежегодным затратам на ремонт повреждений и наносит народному хозяйству значительный ущерб.

В настоящем Руководстве приведены проверенные в практике строительства инженерно-мелиоративные, строительно-конструктивные, тепловые и термохимические мероприятия по борьбе с вредным влиянием морозного пучения грунтов на фундаменты зданий и сооружений, а также в кратком изложении даны указания по производству строительных работ по нулевому циклу и мероприятиям по предотвращению выпучивания незаглубляемых и малозаглубляемых фундаментов под малоэтажные каменные здания различного назначения и одноэтажные сборные деревянные дома в сельской местности.

Наиболее часто встречающиеся повреждения фундаментов и разрушения конструкций надфундаментного строения зданий и сооружений от морозного пучения обусловлены следующими факторами: а) составом грунтов в зоне сезонного промерзания и оттаивания; б) состоянием природной влажности грунтов и условиями их увлажнения; в) глубиной и скоростью сезонного промерзания грунтов; г) конструктивными особенностями фундаментов и надфундаментного строения; д) степенью теплового влияния отапливаемых зданий на глубину сезонного промерзания грунтов; е) эффективностью мероприятий, применяемых против воздействия сил морозного выпучивания фундаментов; ж) способами и условиями производства строительных работ по нулевому циклу; з) условиями эксплуатационного содержания зданий и сооружений. Чаще всего эти факторы воздействуют на фундаменты суммарно при различном их сочетании, и бывает трудно установить действительную причину повреждений в зданиях.

Как правило, результаты исследований взаимодействия промерзающего грунта с фундаментами, полученные по методу моделирования в лабораторных условиях, до сих пор не приносят позитивного эффекта при перенесении этих результатов в строительную практику, поэтому следует быть осмотрительнее с применением в природных условиях зависимостей, установленных в лаборатории.

При проектировании следует принимать в расчет результаты многолетних стационарных экспериментальных данных по исследованию взаимодействия промерзающего грунта с фундаментами в природных условиях, а не за одну зиму, так как климатические условия по отдельным годам с аномальными отклонениями не являются характерными для средней зимы данной местности.

Инженерно-мелиоративные мероприятия в принципе являются коренными, поскольку они обеспечивают осушение грунтов в зоне нормативной глубины промерзания грунтов и снижение степени увлажнения слоя грунта на глубине 2-3 м ниже глубины сезонного промерзания. Это мероприятие возможно осуществить практически не для всех грунтовых и гидрогеологических условий, и тогда следует применять его только как уменьшающее деформацию грунта при промерзании в сочетании с другими мероприятиями.

Строительно-конструктивные мероприятия против сил морозного выпучивания фундаментов направлены в основном на приспособление конструкций фундаментов и частично надфундаментного строения к действующим силам морозного пучения грунтов и к их деформациям при промерзании и оттаивании (например, выбор типа конструкций фундаментов, глубина их заложения в грунт, жесткости конструкций надфундаментного строения, величин нагрузки на фундаменты, заанкеривание фундаментов в грунтах, залегающих ниже глубины промерзания и многие другие конструктивные приспособления).

Рекомендуемые в Руководстве конструктивные мероприятия приведены только в самых общих формулировках без надлежащей конкретизации, как, например, толщина слоя песчано-гравийной или щебеночной подушки под фундаментами при замене пучинистого грунта непучинистым, толщина слоя теплоизолирующих покрытий во время строительства и на период эксплуатации и др.; более детально даны рекомендации по размерам засыпки пазух непучинистым грунтом и по размерам теплоизоляционных подушек в зависимости от глубины промерзания грунтов и местного опыта строительства.

Расчеты фундаментов на устойчивость под действием сил морозного выпучивания, а также расчеты по конструктивным мероприятиям не являются обязательными для всех конструкций, применяемых в фундаментостроении, поэтому нельзя считать эти мероприятия универсальными по борьбе с вредным влиянием морозного пучения грунтов во всех случаях.

Тепловые и химические мероприятия являются коренными как по полному исключению деформаций от морозного пучения, так и по снижению сил морозного выпучивания и величин деформации фундаментов при промерзании грунтов. Они включают в себя применение рекомендуемых теплоизоляционных покрытий на поверхности грунта вокруг фундаментов, теплоносителей для обогрева грунтов и химических реагентов, понижающих температуру смерзания грунта с фундаментом и снижающих касательные силы сцепления мерзлого грунта с плоскостями фундаментов.

При обогреве грунт не будет иметь отрицательную температуру, что исключает его промерзание и морозное пучение.

При обработке грунта химическими реагентами, хотя грунт потом имеет отрицательную температуру, он не замерзает, поэтому также исключается промерзание и морозное пучение.

При назначении противопучинных мероприятий необходимо учитывать значимость зданий и сооружений, особенности технологических процессов производства и условия эксплуатационного режима, грунтовые и гидрогеологические условия, а также климатические характеристики данного района. При проектировании фундаментов на пучинистых грунтах следует отдавать предпочтение таким мероприятиям, которые наиболее экономичны и эффективны в данных условиях.

Изложенные в данном Руководстве мероприятия по борьбе с деформациями зданий и сооружений под действием сил морозного пучения грунтов помогут строителям повысить качество строящихся объектов, обеспечить устойчивость и долговечную эксплуатационную пригодность зданий и сооружений, исключить случаи удлинения сроков строительства, обеспечить ввод зданий и сооружений в промышленную эксплуатацию в плановые сроки, снизить непроизводительные разовые и ежегодно повторяющиеся расходы на ремонт и восстановление поврежденных силами морозного пучения зданий и сооружений.

Руководство составлено доктором техн. наук М. Ф. Киселевым.

Все замечания по тексту Руководства и предложения об улучшении просьба присылать в НИИ оснований и подземных сооружений Госстроя СССР по адресу: 109389, Москва, 2-я Институтская ул., д. 6.

1. ОБЩИЕ ПОЛОЖЕНИЯ

1.1. Данное Руководство предназначено для проектирования и строительства фундаментов зданий, промышленных сооружений и различного специального и. технологического оборудования на пучинистых грунтах.

1.2. Руководство разработано в соответствии с основными положениями глав СНиП по проектированию оснований и фундаментов зданий и сооружений и оснований и фундаментов зданий и сооружений на вечномерзлых грунтах.

1.3. Пучинистыми (морозоопасными) грунтами называются такие грунты, которые при промерзании обладают свойством увеличивать свой объем при переходе в мерзлое состояние. Изменение объема грунта обнаруживается в природных условиях в поднятии в процессе промерзания и опускании при оттаивании дневной поверхности грунта. В результате этих объемных изменений происходят, деформации и наносят повреждения основаниям, фундаментам и надфундаментному строению зданий и сооружений.

1.4. В зависимости от гранулометрического состава грунта, его природной влажности, глубины промерзания и уровня стояния грунтовых вод грунты, склонные к деформациям при промерзании, по степени морозной пучинистости подразделяются на: сильнопучинистые, среднепучинистые, слабопучинистые и практически непучинистые.

1.5. Подразделения грунтов по степени морозной пучинистости в зависимости от изменяющегося во времени уровня грунтовых вод и показателя консистенции I L приняты по табл. 1 прил. 6 главы СНиП по проектированию оснований и фундаментов зданий и сооружений. Природную влажность грунтов на период эксплуатации при проектировании необходимо корректировать по пп. 3.17-3.20 упомянутой выше главы СНиП.

1.6. Основанием для установления степени пучинистости грунтов должны служить материалы гидрогеологических и грунтовых изысканий (состав грунта, его природная влажность и уровень стояния грунтовых вод, которые могут охарактеризовать участок застройки на глубину не менее удвоенной нормативной глубины промерзания грунта, считая от планировочной отметки).

В практике проектирования оснований и фундаментов часто встречаются большие затруднения при оценке грунтов по степени их морозной пучинистости на основании имеющихся материалов инженерно-геологических изысканий, так как обычно слой сезонного промерзания не считается основанием для фундаментов и для него не определяются необходимые характеристики грунта. Если же первые 1,5-2 м в инженерно-геологических материалах охарактеризованы только как «растительный слой» или же как «почва серая», то при отсутствии уровня грунтовых вод близко к слою промерзания не представляется возможности установить степень пучинистости грунтов. При отсутствии характеристик промерзающего слоя грунта надо провести отдельно дополнительные изыскания на стройплощадке, желательно под каждое стоящее здание.

1.7. Проектирование оснований и фундаментов зданий и сооружений на пучинистых грунтах должно осуществляться с учетом:

Таблица 1

Наименование грунта по степени морозной пучинистости

Пределы положения z , м, уровня грунтовых вод ниже расчетной глубины промерзания у фундамента

Консистенция глинистого грунта

I L

песок мелкий

песок пылеватый

супесь

суглинок

глина

Сильнопучинистые

z ≤0,5

z ≤1

z ≤1,5

I L >0,5

Среднепучинистые

z ≤0,5

0,5< z ≤1

1< z ≤1,5

1,5< z ≤2

0,25< I L ≤0,5

Слабопучинистые

z ≤0,5

0,5< z ≤1

1< z ≤1,5

1,5< z ≤2,5

2< z ≤3

0< I L ≤0,25

Практически непучинистые

z >0,5

z >1

z >1,5

z >2,5

z >3

I L ≤0

Примечания : 1. Консистенция глинистых грунтов I L должна приниматься по их природной влажности, соответствующей периоду начала промерзания (до миграции влаги в результате действия отрицательных температур). При наличии в пределах расчетной глубины промерзания глинистых грунтов различной консистенции степень морозной пучинистости этих грунтов в целом принимается по среднему взвешенному значению их консистенции.

2. Крупнообломочные грунты с глинистым заполнителем, содержащие в своем составе более 30% по весу частиц размером менее 0,1 мм, при положении уровня грунтовых вод ниже расчетной глубины промерзания от 1 до 2 м относятся к среднепучинистым грунтам, а менее одного метра - к сильнопучинистым.

3. Величина z - разность между глубиной залегания уровня грунтовых вод и расчетной глубиной промерзания грунта, определяемая по формуле: z =Н 0 – H , где Н 0 -расстояние от планировочной отметки до залегания уровня грунтовых вод; Н - расчетная глубина промерзания, м, по главе СНиП II -15-74.

а) степени морозной пучинистости грунтов;

б) рельефа местности, времени и количества выпадающих атмосферных осадков, гидрогеологического режима, условий увлажнения грунтов и глубины сезонного промерзания;

в) экспозиции строительной площадки по отношению к освещаемости солнцем;

г) назначения, сроков строительства и службы, значимости зданий и сооружений, технологических и эксплуатационных условий;

д) технической и экономической целесообразности назначаемых конструкций фундаментов, трудоемкости и продолжительности работ по нулевому циклу и экономии строительных материалов;

е) возможности изменения гидрогеологического режима грунтов, условий их увлажнения в период строительства и за весь срок эксплуатации здания или сооружения;

ж) имеющихся результатов специальных исследований по определению сил и деформаций морозного пучения грунтов (если таковые имеются).

1.8. Объем и виды специальных исследований свойств грунтов и общих инженерно-геологических и гидрогеологических изысканий предусматриваются общей программой изысканий или дополнительными зданиями к общей программе по согласованию с заказчиком в зависимости от геологических условий, стадии проектирования и специфики проектируемых зданий и сооружений.

2. ОСНОВНЫЕ ПОЛОЖЕНИЯ ПО ПРОЕКТИРОВАНИЮ

2.1. При выборе грунтов в качестве естественных оснований в пределах отведенной территории под застройку следует отдавать предпочтение непучинистым или практически непучинистым грунтам (скальные, полускальные, щебенистые, галечниковые, гравийные, дресвяные, пески гравелистые, пески крупные и средней крупности, а также пески мелкие и пылеватые, супеси, суглинки и глины твердой консистенции при уровне стояния грунтовых вод ниже планировочной отметки на 4-5 м).

2.2. Под каменные здания и сооружения на сильно- и среднепучинистых грунтах целесообразнее проектировать столбчатые или свайные фундаменты, заанкеренные в грунте по расчету на силы выпучивания и на разрыв в наиболее опасном сечении, или же предусматривать замену пучинистых грунтов непучинистыми на часть или на всю глубину сезонного промерзания грунта. Возможно также применение подсыпок (подушек) из гравия, песка, горелых пород с терриконов и других дренирующих материалов под всем зданием или сооружением слоем на расчетную глубину промерзания грунта без удаления пучинистых грунтов или только под фундаментами при надлежащем технико-экономическом обосновании расчетом.

2.3. Все основные мероприятия, направленные против деформаций конструктивных элементов зданий и сооружений при промерзании и пучении грунтов, следует предусматривать при проектировании оснований и фундаментов с включением всех затрат в сметную стоимость работ по нулевому циклу.

В тех случаях, когда мероприятия против морозного пучения проектом не предусмотрены, а гидрогеологические условия грунтов строительной площадки в период выполнения работ по нулевому циклу оказались не соответствующими результатам изысканий или же ухудшились по причине неблагоприятных погодных условий, представители авторского надзора должны составить соответствующий акт и возбудить вопрос перед проектной организацией о назначении дополнительно к проекту мероприятий против морозного пучения грунтов (как, например, осушение грунтов в основании, уплотнение с втрамбовкой щебня и др.).

2.4. Расчет оснований на действие сил морозного выпучивания следует производить по устойчивости, так как деформации морозного пучения знакопеременные, повторяющиеся ежегодно. На пучинистых грунтах проектом следует предусматривать обратную засыпку пазух котлованов до наступления промерзания грунтов во избежание морозного выпучивания фундаментов.

2.5. Прочность, устойчивость и долголетняя эксплуатационная пригодность зданий и сооружений на пучинистых грунтах достигаются применением в практике проектирования и строительства инженерно-мелиоративных, строительно-конструктивных и термохимических мероприятий.

2.6. Выбор противопучинных мероприятий должен базироваться на достоверных и весьма детальных данных о наличии подземных вод, их дебите, направлении и скорости движения их в грунте, рельефе кровли водоупорного слоя, возможностях изменения конструкций фундаментов, способах производства строительных работ, условиях эксплуатации и особенностях технологических процессов производства.

3. ИНЖЕНЕРНО-МЕЛИОРАТИВНЫЕ МЕРОПРИЯТИЯ ПО СНИЖЕНИЮ ДЕФОРМАЦИИ ОТ ДЕЙСТВИЯ СИЛ МОРОЗНОГО ПУЧЕНИЯ ГРУНТОВ

3.1. Основная причина морозного пучения грунтов - наличие в них воды, способной переходить в лед при промерзании, поэтому мероприятия, направленные на осушение грунтов, являются коренными, как наиболее эффективные. Все инженерно-мелиоративные мероприятия сводятся к осушению грунтов или недопущению их водонасыщения в зоне сезонного промерзания и ниже этой зоны на 2-3 м. Важно, чтобы грунты оснований перед промерзанием были максимально обезвожены, чего не всегда можно достичь, так как не все грунты способны быстро отдавать содержащуюся в них воду.

3.2. Выбор и назначение мелиоративных мероприятий должны находиться в зависимости от условий источника увлажнения (атмосферных осадков, верховодки или подземных вод), рельефа местности и геологических напластований с их фильтрационной способностью.

3.3. При составлении проектов строительства и их осуществлении в натуре на площадках, сложенных пучинистыми грунтами, следует по возможности избегать изменения направления естественных водостоков и учитывать наличие растительного покрова и требования к его сохранению.

3.4. При проектировании фундаментов на естественном основании с пучинистыми грунтами надлежит предусматривать надежный водоотвод подземных, атмосферных и производственных вод с площадки путем выполнения своевременно вертикальной планировки застраиваемой территории, устройства ливневой канализационной сети, водоотводных каналов и лотков, дренажа и других гидромелиоративных сооружений сразу же после окончания работ по нулевому циклу, не дожидаясь полного окончания строительных работ.

3.5. В общие меры по осушению участка входят мероприятия по осушению котлованов. До отрывки котлована в первую очередь необходимо защитить его от стока атмосферных вод с окружающей территории, от проникновения воды из соседних водоемов, канав и т.д. путем устройства берм или канав.

3.6. Нельзя допускать застаивание воды в котлованах. При небольшом притоке грунтовой воды следует организовать систематическое удаление ее через устройство колодцев глубиной на 1 м ниже дна котлована.

Для понижения уровня грунтовых вод рекомендуется устройство по периметру котлована вертикальных дрен из песчано-гравийной смеси.

3.7. Обратную засыпку пазух при глинистых грунтах надлежит выполнять с тщательным послойным ее уплотнением ручными и пневмо или электротрамбовками во избежание скопления в засыпке воды, которая повышает влажность грунта не только засыпки, но и грунта природного сложения.

3.8. Насыпные глинистые грунты при планировке местности в пределах застройки должны быть послойно уплотнены механизмами до объемной массы скелета грунта не менее 1,6 т/м 3 и пористости не более 40% (для глинистого грунта без дренирующих прослоек). Поверхность насыпного грунта так же, как и поверхность на срезке, в местах, где отсутствует складирование стройматериалов и движение автотранспорта, полезно покрыть почвенным слоем в 10-15 см и задернить.

Уклон при твердых покрытиях (отмостки, площадки, подъезды и др.) должен быть не менее 3%, а для задернованной поверхности - не менее 5%.

3.9. Для снижения неравномерного увлажнения пучинистых грунтов вокруг фундаментов при проектировании и строительстве рекомендуется: земляные работы производить с минимальным объемом нарушения грунтов природного сложения при рытье котлованов под фундаменты и траншей подземных инженерных коммуникаций; обязательно устраивать водонепроницаемые отмостки шириной не менее 1 м вокруг здания с глиняными гидроизолирующими слоями в основании.

3.10. На строительных площадках, сложенных глинистыми грунтами и имеющих уклон местности более 2%, при проектировании следует избегать устройства резервуаров для воды, прудов и других источников увлажнения, а также расположения вводов в здание трубопроводов канализации и водоснабжения с нагорной стороны здания или сооружения.

3.11. Строительные площадки, расположенные на склонах, должны быть ограждены до начала рытья котлованов от поверхностных вод, стекающих со склонов, постоянной нагорной канавкой с уклоном не менее 5%.

3.12. Нельзя допускать при строительстве скопления воды от повреждения временного водопровода. При обнаружении на поверхности грунта стоячей воды или при увлажнении грунта от повреждения трубопровода необходимо принять срочные меры по ликвидации причин скопления воды или увлажнения грунта вблизи расположения фундаментов.

3.13. При засыпке коммуникационных траншей с нагорной стороны здания или сооружения необходимо устраивать перемычки из мятой глины или суглинка с тщательным уплотнением для предотвращения попадания (по траншеям) воды к зданиям и сооружениям и увлажнения грунтов вблизи фундаментов.

3.14. Устройство прудов и водоемов, которые могут изменить гидрогеологические условия стройплощадки и повысить водонасыщение пучинистых грунтов застраиваемой территории, не допускается. Необходимо учитывать проектируемое изменение уровня воды в реках, озерах и прудах в соответствии с перспективным генеральным планом.

3.15. Следует избегать расположения зданий и сооружений ближе 20 м к действующим колонкам для заправки тепловозов, обмывки автомашин, снабжения населения и для других целей, а также не проектировать колонки на пучинистых грунтах ближе 20 м к существующим зданиям и сооружениям. Площадки вокруг колонок должны быть спланированы с обеспечением отвода воды.

3.16. При проектировании оснований должны учитываться как сезонные и многолетние колебания уровня грунтовых вод (и верховодки), так и возможность формирования нового повышения, или понижения среднего уровня (п. 3.17 главы по проектированию оснований зданий и сооружений). Повышение уровня грунтовых вод увеличивает степень пучинистости грунтов, а поэтому необходимо при проектировании прогнозировать изменение уровня грунтовых вод в соответствии с указаниями пп. 3.17-3.20 главы СНиП по проектированию оснований зданий и сооружений.

3.17. Следует особо обращать внимание на сезон периодического подтопления территории, так как наиболее неблагоприятно сказывается на морозное пучение подтопление территории в осенний период, когда увеличивается водонасыщение грунтов перед промерзанием. Необходимо также прогнозировать искусственное повышение уровня грунтовых вод и природной влажности грунта за счет поступления промышленной воды при технологических процессах, связанных с большим потреблением воды.

3.18. Проектирование инженерно-мелиоративных мероприятий должно базироваться на достоверных и детальных данных о наличии подземных вод, их дебите, направлении и скорости движения их в грунте, рельефе кровли водоупорного слоя. Без этих данных построенные дренажно-осушительные сооружения могут оказаться бесполезными. Если нет возможности избавиться от грунтовых вод и осушить грунты промерзающего слоя, то следует прибегнуть к проектированию конструктивных или термохимических мероприятий.

4. СТРОИТЕЛЬНО-КОНСТРУКТИВНЫЕ МЕРОПРИЯТИЯ ПРОТИВ ДЕФОРМАЦИИ ЗДАНИЙ И СООРУЖЕНИЙ ПРИ ПРОМЕРЗАНИИ И ПУЧЕНИИ ГРУНТОВ

4.1. Строительно-конструктивные мероприятия против деформации зданий и сооружений от морозного пучения грунтов предусматриваются в двух направлениях: полного уравновешивания нормальных и касательных сил морозного пучения и снижения сил и деформаций пучения и приспособления конструкций зданий и сооружений к деформациям грунтов оснований при их промерзании и оттаивании.

При полном уравновешивании нормальных и касательных сил морозного пучения грунтов мероприятия против деформации сводятся к конструктивным решениям и расчету нагрузок на фундаменты. Только на период строительства, когда фундаменты перезимовывают ненагруженными или имеют еще не полную проектную нагрузку надлежит предусматривать временные теплохимические мероприятия по предохранению грунтов от увлажнения и промерзания. Для малоэтажных зданий с малонагруженными фундаментами целесообразно применять такие конструктивные мероприятия, которые направлены на снижение сил морозного пучения и деформаций конструктивных элементов зданий и приспособление, зданий и сооружений к деформациям при промерзании и оттаивании грунтов.

4.2. Фундаменты зданий и сооружений, возводимых на пучинистых грунтах, могут быть запроектированы из любых строительных материалов, которые обеспечивают их эксплуатационную пригодность и удовлетворяют требованиям прочности и долголетней сохранности. При этом необходимо считаться с возможными вертикальными знакопеременными напряжениями от морозного пучения грунтов (поднятие грунтов при промерзании и осадка их при оттаивании).

4.3. При размещении зданий и сооружений на строительной площадке необходимо по возможности учитывать степень пучинистости грунтов с тем расчетом, чтобы под фундаментами одного здания не могли оказаться грунты с различной степенью пучинистости. При необходимости строительства здания на грунтах с различной степенью пучинистости следует предусматривать конструктивные мероприятия против действия сил морозного пучения, например при ленточных сборных железобетонных фундаментах устраивать по фундаментным подушкам монолитный железобетонный пояс и др.

4.4. При проектировании зданий и сооружений с ленточными фундаментами на сильнопучинистых грунтах в уровне верха фундаментов надлежит предусматривать для 1-2-этажных каменных зданий по периметру наружных и внутренних капитальных стен конструктивные железобетонные пояса шириной не менее 0,8 толщины стены, высотой 0,15 м и над проемами последнего этажа - армированные пояса.

Примечание . Железобетонные пояса должны иметь марку бетона не менее М-150, арматуру с минимальным сечением, три стержня диаметром 10 мм с усиленным стыкованием по длине.

4.5. При проектировании свайных фундаментов с ростверком на сильно- и среднепучинистых грунтах необходимо учитывать действие нормальных сил морозного пучения грунтов на подошву ростверка. Сборные железобетонные подстеновые рандбалки должны быть монолитно связаны между собой и уложены с зазором не менее 15 см между рандбалкой и грунтом.

4.6. Глубину заложения фундаментов в практике строительства следует рассматривать как одно из коренных мероприятий по борьбе с деформациями от неравномерных осадок фундаментов и от морозного выпучивания при промерзании грунтов, т. к. заглублением фундаментов в грунт преследуется цель обеспечения устойчивости и долговечной эксплуатационной пригодности зданий и сооружений.

При проектировании глубина заложения фундаментов назначается в зависимости от факторов, предусмотренных в п. 3.27 главы СНиП

При проектировании фундаментов для зданий и сооружений назначение заглубления фундаментов в грунт - довольно сложный и важный вопрос фундаментостроения, поэтому при его решении следует исходить из всестороннего анализа комплексного влияния различных факторов на устойчивость фундаментов и на состояние грунтов в их основании.

Под глубиной заложения фундаментов подразумевается расстояние, измеряемое по вертикали, считая от дневной поверхности грунта с учетом подсыпки или срезки до подошвы фундамента, а при наличии специальной подготовки из песка, щебня или тощего бетона - до низа слоя подготовки. Подошвой фундамента называется нижняя плоскость конструкции фундамента, опирающаяся на грунт и передающая на грунт давление от веса здания и сооружения.

4.7. При определении глубины заложения фундаментов следует учитывать назначение и конструктивные особенности зданий и сооружений. Для уникальных зданий (например, высотные здания и Останкинская телевизионная башня в Москве) критерием для заглубления фундаментов служат свойства грунтов. Известно, что на большей глубине грунты бывают плотнее и могут воспринимать значительно большие нагрузки.

Сборные типовые фундаменты гражданских зданий массового строительства (например, жилых многоэтажных домов) заглубляют по условиям устойчивости. Типового решения глубины заложения фундаментов для всех разновидностей грунтов в основании дать не представляется возможности, они возможны только для аналогичных грунтовых условий.

Малоэтажные здания с малонагруженными фундаментами, как, например, гражданские и промышленные здания и сооружения в сельской местности, проектируются с учетом предельных деформаций на непучинистых грунтах и устойчивости на пучинистых.

Глубина заложения фундаментов под временные здания и сооружения принимается по технико-экономическим соображениям с применением облегченных фундаментов мелкого заложения.

Глубина заложения фундаментов крупных промышленных зданий принимается в зависимости от технологических процессов, фундаментов под специальное оборудование и машины, а также по условиям эксплуатационного содержания здания.

Глубина заложения фундаментов зависит от сочетания постоянных и временных нагрузок на основание, а также от динамических воздействий на грунты в основании фундаментов, особенно эти условия необходимо учитывать при заглублении фундаментов под стены наружного ограждения в промышленных зданиях с большими динамическими нагрузками.

4.8. Фундаменты под тяжелое оборудование и машины, а также под мачты, колонны и другие спецсооружения устанавливаются на глубину в соответствии с требованием обеспечения устойчивости и экономической целесообразности. Как правило, плотность сложения грунтов с глубиной возрастает, и поэтому в целях повышения давления на основание и снижения величины осадок фундаментов при уплотнении грунтов принимают большую глубину заложения фундаментов по сравнению с глубиной заложения фундаментов по условиям промерзания и пучения грунтов.

Фундаменты, работающие на горизонтальные или вырывающие нагрузки, закладываются на глубину в зависимости от величины этих нагрузок. Для зданий с отапливаемыми подвалами глубина заложения фундаментов принимается по условиям устойчивости фундамента независимо от глубины промерзания грунта.

4.9. Встречаются случаи, когда на застраиваемой территории изменяется природный рельеф площадки путем отвода русел ручьев и речек за пределы площадки строительства, а старое русло засыпается грунтом или же площадка выравнивается срезкой грунта на одном участке и подсыпкой на другом.

Несмотря на уплотнение насыпных грунтов, осадка фундаментов на них будет больше по сравнению с осадкой грунта природного сложения, а поэтому и глубину заложения фундаментов нельзя принимать одинаковую для насыпных грунтов и грунтов природного сложения:

При назначении глубины заложения фундаментов необходимо учитывать гидрогеологические условия как решающий фактор во многих случаях проектирования фундаментов. Глубина заложения фундамента зависит от физического состояния современных геологических отложений, однородности и плотности грунта, уровня грунтовых вод и консистенции глинистых грунтов. Грунты рыхлого сложения, водонасыщенные и содержащие в своем составе большое количество органических остатков, не всегда можно использовать в качестве естественных оснований.

На грунтах слабых и сильносжимаемых требуется применять мероприятия по улучшению свойств грунтов или же проектировать свайные фундаменты.

Глубину заложения фундаментов в сложных гидрогеологических условиях следует решать в нескольких вариантах, и наиболее рациональное решение принимается из их сравнения на основании технико-экономических расчетов.

Крайне неблагоприятным фактором в фундаментостроении считается наличие грунтовых вод и расположение их уровня близко к дневной поверхности. Этот фактор обусловливает не только глубину заложения фундаментов, но и их конструкцию и способ производства работ по возведению фундаментов.

4.10. Периодическое колебание уровня грунтовых вод в напряженной зоне основания фундаментов сильно влияет на несущую способность грунтов и вызывает деформации оснований и фундаментов. Кроме того, близкое расположение уровня грунтовых вод к слою мерзлого грунта обусловливает величину морозного вспучивания грунта за счет подсоса влаги из нижележащих водонасыщенных грунтов.

Особым видом грунтовых вод является так называемая верховодка с ограниченным распространением в плане и невыдержанным уровнем стояния грунтовой воды, вмещаемой в толще грунта в виде отдельных очагов. Довольно часто верховодка встречается в толще сезоннопромерзающего грунта и обусловливает большую неравномерность морозного пучения грунтов и выпучивание фундаментов. Даже в пределах одной строительной площадки встречается несколько очагов верховодки с различным уровнем стояния грунтовой воды, иногда даже напорной.

Необходимо учитывать при назначении глубины заложения фундаментов глубину промерзания и степень пучинистости грунтов, тан как по условию устойчивости нельзя допускать промерзания пучинистых грунтов ниже подошвы фундаментов.

4.11. Глубина заложения фундаментов каменных гражданских зданий и промышленных сооружений на пучинистых грунтах принимается не менее расчетной глубины промерзания грунтов согласно табл. 15 главы СНиП по проектированию оснований зданий и сооружений.

Расчетная глубина промерзания грунтов определяется по формуле

Σ| T м | - сумма абсолютных значений среднемесячных отрицательных температур за зиму в данном районе, принимаемых по табл. 1 главы СНиП по строительной климатологии и геофизике, а при отсутствии в ней данных для конкретного пункта или района строительства по результатам наблюдений гидрометеорологической станции, находящейся в аналогичных условиях со строительной площадкой;

Н 0 - глубина промерзания грунта при Σ| T м |=1, зависящая от вида грунта и принимаемая равной, см, для: суглинков и глин - 23; супесей, песков мелких и пылеватых - 28, песков гравелистых, крупных и средней крупности - 30;

m t - коэффициент, учитывающий влияние теплового режима здания (сооружения) на глубину промерзания грунта у фундаментов стен и колонн, принимаемый по табл. 14 главы СНиП по проектированию оснований зданий и сооружений.

Различают три отличающиеся друг от друга глубины промерзания грунтов: фактическую, нормативную и расчетную.

В практике фундаментостроения под фактической глубиной промерзания грунтов принято считать слой твердосмерзшейся почвы по вертикали от поверхности до подошвы твердомерзлого слоя грунта. Гидрометслужба за фактическую глубину промерзания грунтов принимает глубину проникания температуры нуль градусов в грунт, так как для сельскохозяйственных целей требуется знать глубину промерзания грунта до нулевой температуры, а для целей фундаментостроения требуется знать, на какую глубину грунт находится в твердомерзлом состоянии. Поскольку фактическая глубина промерзания грунтов зависит от климатических факторов (даже в одном и том же пункте в разные годы глубина промерзания грунтов имеет колебание), то за нормативную глубину промерзания грунтов по п. 3.30 главы СНиП по проектированию оснований зданий и сооружений принято среднее значение.

Следует подразделять промерзание грунта под подошвой фундамента на разовое при производстве работ по нулевому циклу в зимнее время и на ежегодное в процессе всего срока эксплуатации здания, когда появляются знакопеременные деформации при сезонном промерзании и оттаивании грунтов в период эксплуатации. При назначении глубины заложения фундаментов по условию исключения возможности промерзания пучинистого грунта под подошвой фундамента имеется в виду ежегодное промерзание в процессе эксплуатации зданий и сооружений, так как по условию промерзания грунта в период строительства глубина заложения фундамента не определяется.

Как уже упоминалось выше, мероприятие по глубине заложения фундаментов против недопущения промерзания грунта под подошвой фундамента относится лишь к эксплуатационному периоду, а на период строительства предусматриваются защитные мероприятия по предохранению грунта от промерзания, поскольку в период строительства подошва фундаментов может оказаться в зоне промерзания вследствие незавершения строительных работ по нулевому циклу.

В тех случаях когда природная влажность грунтов не повышается в периоды строительства и эксплуатации зданий на слабопучинистых грунтах (полутвердой и тугопластичной консистенции), глубина заложения фундаментов по условию возможности выпучивания должна приниматься при нормативной глубине промерзания:

до 1 м - не менее 0,5 м от планировочной отметки

до 1,5 м - не менее 0,75 м от планировочной отметки

от 1,5до 2,5 м - не менее 1,0 м от планировочной отметки

от 2,5до 3,5 м - не менее 1,5 м от планировочной отметки

Для практически непучинистых грунтов (твердой консистенции) расчетная глубина может приниматься равной нормативной глубине промерзания с коэффициентом 0,5.

4.12. На основании экспериментальной проверки незаглубляемых и мелкозаглубляемых фундаментов на строительных объектах за последние годы в практике энергетического и сельскохозяйственного строительства применяют железобетонные фундаменты в виде плит, лежней и блоков, укладываемых без заглубления на пучинистых грунтах под временные здания и сооружения строительных баз теплоэлектростанций и под оборудование открытых распределительных устройств электроподстанций. При этом полностью исключаются касательные силы морозного выпучивания и накопление остаточных необратимых деформаций морозного выпучивания. Этот способ значительно удешевляет строительство и в то же время обеспечивает эксплуатационную пригодность зданий и спецоборудования.

4.13. Глубина заложения фундаментов под внутренние несущие стены и колонны неотапливаемых промышленных зданий на сильно- и среднепучинистых грунтах принимается не менее расчетной глубины промерзания грунтов.

Глубина заложения фундаментов стен и колонн отапливаемых зданий, имеющих неотапливаемые подвалы или подполья на сильнопучинистых и среднепучинистых грунтах, принимается равной нормативной глубине промерзания с коэффициентом 0,5, считая от поверхности пола подвала.

При срезках грунта с наружной стороны стен здания нормативная глубина промерзания грунта считается от поверхности грунта после срезки, т.е. от планировочной отметки. При подсыпках грунта вокруг стен с наружной стороны нельзя допускать возведения здания до отсыпки грунта вокруг фундаментов на проектную отметку.

При срезках и отсыпках грунта следует особо обратить внимание на осушение грунтов снаружи здания, так как водонасыщенные грунты при промерзании могут нанести повреждения зданию вследствие бокового давления на стены подвала.

4.14. Как правило, не допускается промораживание грунта ниже подошвы фундамента каменных зданий и сооружений и фундаменте под специальное технологическое оборудование и машины на сильнопучинистых и среднепучинистых грунтах как во время строительства, так и в период эксплуатации.

На практически непучинистых грунтах может быть допущено промерзание грунтов ниже подошвы фундаментов только при условии, если грунты природного сложения плотные и к моменту промерзания или во время промерзания природная влажность их не превышает влажность на границе раскатывания.

4.15. Как правило, запрещается укладка фундаментов на мерзлый грунт в основании без проведения специальных исследований физического состояния мерзлого грунта и заключения от научно-исследовательской организации.

Не редки случаи в практике фундаментостроения, когда требуется укладывать фундаменты на промороженные грунты. При благоприятных грунтовых условиях можно допустить укладку фундаментов на мерзлые грунты без предварительного их отогрева, но при этом необходимо иметь достоверные физические характеристики грунтов в мерзлом состоянии и данные об их природной влажности, чтобы убедиться в том, что действительно грунты очень плотные и маловлажные при твердой консистенции и по степени морозной пучинистости относятся к практически непучинистым. Показателем плотности мерзлого глинистого грунта служит объемная масса скелета мерзлого грунта более 1,6 г/см 3 .

4.16. В целях уменьшения сил пучения и предупреждения деформаций фундаментов, вследствие смерзания пучащихся грунтов с боковой поверхностью фундаментов следует:

а) принимать простейшие формы фундаментов с малой площадью поперечного сечения;

б) отдавать предпочтение столбчатым и свайным фундаментам с фундаментными балками;

в) уменьшать площадь смерзания грунта с поверхностью фундаментов;

г) заанкеривать фундаменты в слое грунта ниже сезонного промерзания;

д) снижать глубину промерзания грунта возле фундаментов теплоизоляционными мероприятиями;

е) уменьшать значения касательных сил морозного пучения путем применения смазки плоскостей фундаментов полимерной пленкой и другими смазочными материалами;

ж) принимать решения по повышению нагрузок на фундамент для уравновешивания касательных сил выпучивания;

з) применять полную или частичную замену пучинистого грунта непучинистым.

4.17. Расчет устойчивого положения фундаментов на воздействие сил морозного пучения грунтов основания должен производиться в тех случаях, когда грунты соприкасаются с боковой поверхностью фундаментов или расположены под их подошвой, относятся к пучинистым и возможно их промерзание.

Примечания . 1. При проектировании капитальных зданий на фундаментах глубокого заложения с большими нагрузками расчет устойчивости можно производить только на период строительства, если фундаменты перезимовывают ненагруженными;

2. При проектировании и строительстве малоэтажных зданий с конструкциями, малочувствительными к неравномерным осадкам (например, с деревянными рублеными или брусчатыми стенами), а также для сельскохозяйственных сооружений типа овоще- и силосохранилищ, выполняемых из древесных материалов, расчеты на действие сил морозного пучения можно не производить и мероприятия против лучения не применять.

4.18. Устойчивость положения фундаментов при действии на них касательных сил морозного выпучивания проверяется расчетом по формуле

(3)

где N н - нормативная нагрузка на основание в уровне подошвы фундамента, кгс;

Q н - нормативное значение силы, удерживающей фундамент от выпучивания вследствие трения его боковой поверхности о талый грунт, расположенный ниже расчетной глубины промерзания (определяемое по );

n 1 - коэффициент перегрузки, принимаемый равным 0,9;

n - коэффициент перегрузки, принимаемый равным 1,1;

τ н - нормативное значение удельной касательной силы пучения, принимаемое равным 1; 0,8 и 0,6 соответственно для сильнопучинистых, среднепучинистых и слабопучинистых грунтов;

F - площадь боковой поверхности части фундамента, находящейся в пределах расчетной глубины промерзания, см (при определении значения F принимается расчетная глубина промерзания, но не более 2 м).

4.19. Нормативное значение силы, удерживающей фундамент от выпучивания, Q н вследствие трения его боковой поверхности о талый грунт определяется по формуле

(4)

где - нормативное значение удельного сопротивления сдвигу талого грунта основания по боковой поверхности фундамента, определяемое по результатам опытных исследований; при их отсутствии значение допускается принимать для песчаных грунтов 0,3 кгс/см 2 и для глинистых 0,2 кгс/см 2 .

4.20. В случае применения фундаментов анкерного типа сила Q н , удерживающая фундамент от выпучивания, должна определяться по формуле

(5)

где γ с p - среднее нормативное значение объемного веса грунта, расположенного выше поверхности анкерной части фундамента, кгс/см 3 ;

F a - площадь верхней поверхности анкерной части фундамента, воспринимающая вес вышележащего грунта, см 2 ;

h a - заглубление анкерной части фундамента от ее верхней поверхности до отметки планировки, см.

4.21. Определение сил морозного пучения грунтов, действующих по боковой поверхности фундаментов, имеет большое значение для проектирования оснований и фундаментов малоэтажных и вообще зданий с малонагруженными фундаментами, особенно для случаев применения монолитных неступенчатых фундаментов.

Пример . Требуется проверить фундамент-плиту из керамзитобетона с размерами 100×150 см под колонну одноэтажного каркасного здания. Глубина промерзания грунта ниже подошвы плиты 60 см, нагрузка на колонну, опирающуюся на плиту, 18 т. Плита уложена на поверхность песчаной подсыпки без заглубления в грунт. Грунт в основании плиты по степени морозной пучинистости относится к среднепучинистому.

Подставляя значения величин в формулу (), получим величину нормальных сил морозного пучения грунтов N н =18 т; n 1 =0,9; n =1,1; F ф =100×150=15000 см 2 ; h 1 =50 см; σ н =0,02 (по ) ; 0,9×18≥1,1×150×50×100×0,02; 16,2<16,5 т.

Экспериментальная проверка показала, что при такой нагрузке фундамент каркасного здания при промерзании грунта на 120 см наблюдались вертикальные смещения фундаментных плит от 3 до 10 мм, что вполне допустимо для каркасных одноэтажных зданий.

Пределы применимости мероприятия по предотвращению выпучивания незаглубляемых и малозаглубляемых фундаментов составлены на основании обобщения имеющегося опыта строительства и эксплуатации зданий и сооружений, возводимых в качестве экспериментальных на пучинистых грунтах.

МЕРОПРИЯТИЯ ПО УСТРОЙСТВУ НЕЗАГЛУБЛЯЕМЫХ ФУНДАМЕНТОВ НА ПУЧИНИСТЫХ ГРУНТАХ

6.3. При устройстве незаглубляемых фундаментов не проявляются касательные силы морозного выпучивания и, следовательно, исключается возможность возникновения и накопления остаточных неравномерных деформаций при промерзании и оттаивании грунтов. Таким образом, основные мероприятия по обеспечению устойчивости и эксплуатационной пригодности зданий и сооружений сводятся к подготовке грунтов оснований для укладки на них фундаментов с целью снижения деформаций морозного пучения и приспособления конструкций фундаментов и надфундаментного строения, к знакопеременным деформациям.

Нормальные силы морозного пучения в большинстве случаев превышают вес надфундаментного строения, т.е. они не уравновешиваются нагрузкой на фундамент и тогда основным фактором, влияющим на выпучивание фундамента будет величина деформации или пучения грунта. Если же величина морозного пучения не пропорциональна значениям нормальных сил пучения, то в мероприятия следует направить не на преодоление нормальных сил морозного пучения, а на снижение значений деформации пучения до предельно допустимых величин.

В зависимости от наличия вблизи площадки непучинистых грунтов или материалов для устройства подушек под фундаментные плиты можно применять песок крупный и средней крупности, гравийно-галечник, мелкий щебень, котельный шлак, керамзит и различные горнопромышленные отходы.

На площадках с насыпными или намывными грунтами проектирование незаглубленных фундаментов в виде плит и лежней следует выполнить в соответствии с требованиями разд. 10 главы СНиП по проектированию оснований зданий и сооружений.

При устройстве незаглубляемых ленточных фундаментов под сборные одноэтажные здания надлежит руководствоваться следующими рекомендациями:

а) на спланированной площадке после разбивки осей укладывается песчаная, подсыпка под наружные стены толщиной 5-8 см и шириной 60 см. Устанавливается опалубка, укладывается арматура (три стержня диаметром 20 мм) и производится бетонирование (сечение ленты 30×40 см). На чрезмерно пучинистых грунтах, особенно в пониженных элементах рельефа, рекомендуется монолитный ленточный фундамент укладывать на подсыпках толщиной 40-60 см, но при этом насыпной грунт подсыпки следует максимально уплотнить;

б) после окончания фундаментных работ надлежит закончить планировку площадки вокруг дома с обеспечением стока воды от здания;

в) на среднепучинистых, слабопучинистых и практически непучинистых грунтах можно устраивать ленточные фундаменты из сборных железобетонных блоков сечением 25×25 см и длиной не менее 2 м;

г) согласно типовому проекту обязательно следует выполнить укладку отмостки снаружи дома шириной 0,7 м, посадить декоративные кустарники, подготовить почвенный слой вокруг дома и посеять семена дернообразующих трав. Планировка участков под задернение должна быть выполнена под линейку.

МЕРОПРИЯТИЯ ПО УСТРОЙСТВУ МАЛОЗАГЛУБЛЯЕМЫХ ФУНДАМЕНТОВ НА ПУЧИНИСТЫХ ГРУНТАХ

6.4. Малозаглубляемые фундаменты на локально уплотненном основании нашли применение при строительстве зданий и сооружений сельскохозяйственного назначения на средне- и слабопучинистых грунтах. Локальное уплотнение грунтов достигается забивкой фундаментных блоков в грунт или установкой сборных блоков в гнезда, вытрамбованные при помощи инвентарного уплотнителя динамическим способом, что повышает степень индустриализации строительных работ, снижает стоимость, трудовые затраты, и расходы стройматериалов.

Локально уплотненное грунтовое основание под фундаментом приобретает улучшенные физико-механические свойства и имеет значительно большую несущую способность. В результате повышенного давления на грунт и его большей плотности резко снижаются деформации основания при замерзании и оттаивании грунта.

Экспериментальными исследованиями по определению деформации морозного пучения под давлением в природных условиях было установлено, что при промерзании локально уплотненного основания ниже подошвы фундамента на 60-70 см величина морозного выпучивания фундамента составляет: при давлении на грунт в 1 кгс/см 2 - 5–6 мм; 2 кгс/см 2 - 4 мм; 3 кгс/см 2 - 3 мм; 4 кгс/см 2 - 2 мм и при давлении 6,5 кгс вертикальных перемещений у фундамента не наблюдалось в течение двух зим.

Применение локального уплотнения грунтов, в основании на средне- и слабопучинистых грунтах дает возможность использовать промерзающий грунт в качестве естественного основания с глубиной заложения фундаментов на 0,5-0,7 от нормативной глубины промерзания грунтов. Так, например, для средней полосы Европейской территории СССР заложение фундаментов можно принимать на 1 м от планировочной отметки с условием локального уплотнения грунтов.

Подготовка оснований под малозаглубляемые фундаменты должна производиться в следующем порядке:

а) срезка растительно-дернового слоя и подсыпка, грунта, не содержащего растительных включений;

б) локальное уплотнение грунтов в основании столбчатых фундаментов путем забивки инвентарного уплотнителя для образования гнезд под сборные фундаменты;

в) разбивка осей расположения уплотненных оснований должна производиться после того, как на площадку будет доставлено оборудование для локального уплотнения грунтов под отдельно-стоящие фундаменты;

г) глубина заложения малозаглубляемых фундаментов принимается из следующих условий:

для зданий, в которых не допускаются вертикальные перемещения от морозного пучения грунтов в зависимости от удельного давления на грунт под подошвой фундамента в пределах от 4 до 6 кгс/см 2 ;

для легких зданий, при наличии вертикальных перемещений, не мешающих нормальной эксплуатации (временные, сборнощитовые, деревянные и другие здания), глубина промерзания грунта под подошвой фундамента может быть принята, исходя из допустимых деформаций.

Перед устройством малозаглубляемых фундаментов на площадках со сложным геологическим сложением необходимо уточнить осадки фундаментов, установленных на локально-уплотненном основании, статическими испытаниями. Количество испытаний на объекте устанавливается проектной организацией в. зависимости от гидрогеологических условий.

Технология устройства малозаглубляемых фундаментов изложена во «Временных рекомендациях по проектированию и устройству мелкозаглубленных фундаментов на пучинистых грунтах под малоэтажные сельскохозяйственные здания» (НИИОСП, М., 1972).

7. ТЕПЛОИЗОЛЯЦИОННЫЕ МЕРОПРИЯТИЯ ПО СНИЖЕНИЮ ГЛУБИНЫ ПРОМЕРЗАНИЯ ГРУНТОВ И НОРМАЛЬНЫХ СИЛ МОРОЗНОГО ВЫПУЧИВАНИЯ МАЛОЗАГЛУБЛЯЕМЫХ ФУНДАМЕНТОВ

ОПЫТ ПРИМЕНЕНИЯ ТЕПЛОИЗОЛЯЦИОННЫХ МЕРОПРИЯТИИ В ПРАКТИКЕ СТРОИТЕЛЬСТВА

7.1. Теплоизоляционные мероприятия, применяемые в практике фундаментостроения, подразделяются на временные (только на период строительства) и на постоянные (с учетом их действия в течение всего срока эксплуатации зданий и сооружения).

Во время строительства вокруг фундаментов зданий и сооружений рекомендуется применять временные теплоизоляционные покрытия из опилок, шлака, керамзита, шлаковаты, соломы, снега и других материалов в соответствии с указаниями по предохранению грунтов и грунтовых оснований от промерзания.

К постоянным теплоизоляционным мероприятиям относятся отмостки, укладываемые на теплоизоляционную подушку из шлака, керамзита, шлаковаты, поролона, прессованных торфяных плит, сухого песка и. др. материалов.

Уложенные теплоизоляционные отмостки вокруг строящегося здания обычно разрушаются при дальнейших монтажных работах движением механизмов и после полного окончания строительных работ их требуется перестраивать, что не всегда выполняется, а поэтому создаются условия для неравномерного водонасыщения грунтов и глубины промерзания грунтов возле фундаментов.

Наибольший теплоизоляционный эффект достигается в тех случаях, когда материал подушки находится в сухом состоянии, но часто теплоизоляционный материал, уложенный в корыто, водонасыщается осенью перед промерзанием и от этого снижается теплоизоляционный эффект.

В некоторых случаях вместо устройства отмосток применяют задернение поверхности грунта у наружных стен и, как показывает опыт, промерзание грунта под растительным покровом снижается на половину по сравнению с глубиной промерзания грунта под оголенной поверхностью грунта.

РЕКОМЕНДАЦИИ ПО УСТРОЙСТВУ ТЕПЛОИЗОЛЯЦИОННЫХ МЕРОПРИЯТИЙ ДЛЯ СНИЖЕНИЯ ГЛУБИНЫ ПРОМЕРЗАНИЯ ГРУНТОВ

7.2. В целях обеспечения сохранности отмосток и их теплоизоляционного эффекта рекомендуется вместо отмосток на теплоизоляционных подушках применять для отмосток керамзитобетон с объемным весом в сухом состоянии от 800 до 1000 кгс/м 3 при расчетной величине коэффициента теплопроводности соответственно в сухом состоянии 0,2-0,17 и в водонасыщенном 0,3-0,25 ккал/м·ч·°С.

Укладку отмостки из керамзитобетона следует производить только после тщательного уплотнения и планировки грунта возле фундаментов у наружных стен.

Керамзитобетонную отмостку желательно укладывать на поверхность грунта с расчетом меньшего ее водонасыщения. Не следует укладывать керамзитобетон в открытое в грунте корыто на толщину отмостки. Если же по конструктивным особенностям этого избежать нельзя, то необходимо предусмотреть дренажные воронки для отвода воды из-под керамзитобетонной отмостки.

Конструкция керамзитобетонной отмостки принимается простейшей формы в виде ленты, размеры которой назначаются в зависимости от расчетной глубины промерзания грунта по табл. 5.

Таблица 5

Глубина промерзания грунта, м

Размеры отмостки, м

толщина

ширина

До 1

0,15

2 и более

По данным экспериментальной проверки теплоизоляционного эффекта отмостки на керамзитовой подушке толщиной 0,2 м и шириной 1,5 м глубина промерзания грунта у ограждения зимних теплиц уменьшалась в 3 раза и коэффициент теплового влияния отапливаемой теплицы с отмосткой на керамзитовой подушке m t получен в среднем 0,269.

В такой же экспериментальной проверке на строительных объектах нуждаются предлагаемые размеры керамзитобетонных отмосток и конструкций незаглубляемых и малозаглубляемых железобетонных фундаментов на керамзите для временных зданий и сооружений строительных баз теплоэлектростанций.

8. УКАЗАНИЯ К ПРОИЗВОДСТВУ СТРОИТЕЛЬНЫХ РАБОТ ПО НУЛЕВОМУ ЦИКЛУ

8.1. К производству работ нулевого цикла предъявляются следующие требования: избегать избыточного водонасыщения пучинистых грунтов в основании фундаментов, предохранять их от промерзания в период строительства и своевременно оканчивать земляные работы по засыпке пазух и планировке площадки вокруг строящегося здания.

В практике строительства иногда на пониженных площадках применяется подсыпка грунта при помощи рефулирования со дна водоема мелкозернистого или пылеватого песка. Поскольку гидромониторами песок вместе с водой выливается из труб на площадку (с которой вода скатывается, а грунт оседает), следует предусмотреть дренирование песчаного намытого слоя в целях его самоуплотнения и снижения водонасыщения.

Обычно намытые мелкие и пылеватые пески долгое время находятся в водонасыщеном состоянии, поэтому такие грунты при промерзании оказываются сильнопучинистыми и в то же время слабоуплотненными.

При использования рефулированных грунтов в качестве естественных оснований нельзя допускать промерзания грунтов под фундаментами и укладывать фундаменты на промороженный грунт даже для малоэтажных зданий.

Там, где здания уже построены или находятся в стадии строительства, не следует допускать намыв пучинистых грунтов ближе 3 м от фундаментов наружных стен.

Способ производства земляных работ с применением гидромеханизации безвредно можно применять в южных районах нашей страны, где нормативная глубина промерзания грунтов не более 70-80 см, а также при непучинистых грунтах по всей территории СССР. Но на площадках, сложенных пучинистыми грунтами, разработку грунтов при помощи гидромеханизации производить не следует, так как этот способ водонасыщает грунты, что нарушает требования п.п. 3.36-3.38, 3.40 и 3.41 главы СНиП по проектированию оснований зданий и сооружений о предохранении грунтов от избыточного водонасыщения поверхностными водами. Категорического запрещения в применении разработки грунтов способом гидромеханизации в принципе нет, но при этом способе нужно предпринять необходимые гидромелиоративные мероприятия по осушению грунтов в основании фундаментов я дать надлежащие технико-экономические обоснования.

8.2. При устройстве фундаментов на пучинистых грунтах необходимо стремиться при рытье котлованов землеройными механизмами к соблюдению требований действующих нормативно-технических документов на производство и приемку земляных работ. Следует отрывать траншеи для укладки ленточных сборных и монолитных фундаментов небольшой ширины с тем расчетом, чтобы ширину пазух можно было перекрыть отмасткой или гидроизоляционным экраном. После монтажа сборных фундаментов или укладки бетона в монолитный фундамент следует немедленно произвести обратную засыпку пазух с тщательным уплотнением грунта и обеспечением стока от скопления поверхностных вод вокруг здания, не дожидаясь окончательной планировки площадки и укладки отмосток.

8.3. Открытые котлованы и траншеи не следует оставлять на длительное время до установки в них фундаментов, так как большой разрыв во времени между открытием котлованов и укладкой в них фундаментов в большинстве случаев приводит к резкому ухудшению грунтов в основании фундаментов вследствие периодического или постоянного затопления дна котлована водой. На пучинистых грунтах к вскрытию котлована следует приступать только тогда, когда на строительную площадку завезены фундаментные блоки и все необходимые материалы и потребное оборудование.

Все работы по укладке фундаментов и засыпке пазух желательно выполнять в летний период, когда работы можно производить быстро и с высоким качеством при сравнительно невысокой стоимости земляных работ. Сезонность производства работ по нулевому циклу на пучинистых грунтах было бы полезно соблюдать.

При необходимости вскрытия котлованов и траншей на глубину больше 1 м в зимнее время, когда грунт находится в твердо-мерзлом состоянии, часто приходится прибегать к искусственному оттаиванию грунта различными способами, что ускоряет выполнение земляные работ и не ухудшает строительные свойства грунтов в основании фундаментов. Не следует применять оттаивание пучинистых грунтов путем пуска водяного пара в пробуренные скважины, так как при этом резко повышается влажность грунта за счет конденсата водяного пара.

8.4. Засыпку пазух надлежит выполнять после окончания бетонирования монолитных фундаментов и после укладки цокольного перекрытия при сборно-блочных фундаментах. Следует иметь в виду, что засыпка пазух возле фундаментов бульдозером не обеспечивает надлежащего уплотнения грунта и вследствие этого происходит аккумуляция большого количества поверхностных вод, которые неравномерно водонасыщают грунты возле фундаментов и при замерзании создают благоприятные условия для деформации фундаментов и надфундаментного строения касательными силами морозного выпучивания. Еще хуже бывает, когда засыпка пазух выполняется в зимнее время мерзлым грунтом и без уплотнения. Уложенная отместка возле фундаментов обычно проваливается после оттаивания и самоуплотнения грунта в пазухах.

Пазухи надлежит засыпать тем же талым грунтом с тщательным послойным уплотнением.

Применение механизмов для уплотнения грунта при засыпке пазух затрудняется из-за наличия цокольных стенок, создающих стесненные условия для работы механизмов.

8.5. Согласно требованию главы СНиП по проектированию оснований зданий и сооружений надлежит применять мероприятия по предотвращению промерзания пучинистого грунта ниже подошвы фундамента в период строительства.

В случае перезимования уложенных фундаментов и плит не следует забывать о предохранении грунтов от промерзания, особенно когда фундаменты будут нагружаться при кладке или монтаже стен здания до оттаивания грунтов ниже подошвы, фундаментов. В целях предохранения грунтов от замерзания в основании фундаментов применяют различные способы, начиная с засыпки грунтом и кончая покрытием фундаментов и плит теплоизоляционными материалами. Отложения снега являются также хорошим теплоизолирующим материалом и его можно использовать в качестве теплоизолятора.

Железобетонные плиты, толщиной более 0,3 м на сильнопучинистых грунтах должны быть укрыты при нормативной глубине промерзания более 1,5 м минеральными плитами в один слой, шлаковатными магами или керамзитом с объемным весом 500 кгс/м 3 и коэффициентом теплопроводности 0,18 слоем 15-20 см.

Если здание возведено, а грунты в основании фундаментов находятся в мерзлом состоянии, то необходимо позаботиться об обеспечении равномерного оттаивания грунтов под подошвой фундамента путем укладки теплоизоляционных покрытий с наружных сторон фундаментов и обогревом грунтов внутри здания, для чего можно использовать электроэнергию или нагревание воздуха в подполье калориферами и временными отопительными печами.

Стены зимней кладки для равномерного оттаивания с южной стороны приходится завешивать рогожами, щитами, толем, фанерой или соломенными матами для защиты от обрушения при быстром и неравномерном оттаивании.

В качестве теплоизоляции на период оттаивания грунтов возле фундаментов снаружи здания на 1-1,5 месяца с южной стороны можно применить складирование бетонных блоков, кирпича, щебня, песка, керамзита и других материалов.

Из-за неравномерного оттаивания грунтов под наружными и внутренними поперечными несущими стенами происходит образование сквозных трещин под и над проемами на поперечной внутренней несущей стене. Эти трещины обычно расширяются и иногда вверху доходят до десятков сантиметров, при этом у наружных продольных стен наблюдается крен с отклонением верхней части в сторону от здания. При больших кренах приходится разбирать значительные участки наружных и внутренних стен.

Крен наружных стен часто образуется в процессе промерзания грунта в январе-марте, когда фундаменты наружных стен заложены на расчетную глубину промерзания грунта, а под внутренние несущие стены фундаменты заложены мелко (на половину или даже одну треть от нормативной глубины промерзания грунтов).

Под действием нормальных сил морозного пучения грунтов на подошву фундаментов внутренних несущих стен также появляются расширяющиеся кверху сквозные трещины, при этом верх наружных стен заметно отклоняется от вертикали. Крем наружных стен зависит от высоты поднятия внутренней каменной стены и ширины раскрытия одной или двух трещин на верху внутренней стены.

8.6. При первом обнаружении хотя бы мелких волосяных трещин на стенах каменных зданий необходимо установить причину их появления и принять меры по прекращению расширения этих трещин. Если трещины появились под действием нормальных сил морозного пучения, то нельзя допускать заделки этих трещин цементным раствором. Основным мероприятием в данном случае будет оттаивание грунта внутри здания под фундаментами внутренних несущих стен, что вызовет осадку фундамента и трещины закроются частично или полностью. От продолжения возведения стен или монтажа сборных домов при промороженном основании следует воздержаться до полного оттаивания грунтов под фундаментами и до стабилизации осадки фундаментов после оттаивания грунтов.

8.7. На строительных площадках во время производства работ грунты в основании локально водонасыщаются от утечки воды в грунт из неисправной водопроводной сети. Это приводит к тому, что на отдельных участках глинистые грунты из непучинистых и слабопучинистых превращаются в сильнопучинистые со всеми вытекающими последствиями.

Для предохранения грунтов, в основании фундаментов от локального водонасыщения в период строительства линии временного водоснабжения стройки следует укладывать по поверхности, с тем чтобы легче было обнаружить появление утечки воды и своевременно устранить повреждения в водопроводной сети.

9. МЕРОПРИЯТИЯ НА ПЕРИОД ЭКСПЛУАТАЦИИ ЗДАНИЙ И СООРУЖЕНИЙ ПО ЗАЩИТЕ ГРУНТОВ В ОСНОВАНИИ ОТ ИЗБЫТОЧНОГО ВОДОНАСЫЩЕНИЯ

9.1. При промышленной эксплуатации зданий и сооружений, возведенных на пучинистых грунтах, не следует допускать изменения проектных условий по основаниям и фундаментам. Для обеспечения устойчивости фундаментов и эксплуатационной пригодности зданий необходимо выполнять мероприятия, направленные против повышения степени пучинистости грунтов и появления деформаций конструктивных элементов здания от морозного выпучивания фундаментов. Эти мероприятия сводятся к выполнению следующих требований: а) не создавать условий для повышения влажности грунтов в основании фундаментов и в зоне сезонного промерзания ближе 5 м в сторону от фундаментов; б) не допускать более глубокого промерзания грунтов около фундаментов по отношению к расчетной глубине промерзания грунтов, принятой при проектировании; в) не разрешать срезать грунт вокруг фундаментов при перепланировке населенного пункта или застраиваемой площадки; г) не снижать проектную нагрузку на фундамент.

В целях борьбы с повышением природной влажности грунтов в основании фундаментов в процессе промышленной эксплуатации зданий и сооружений рекомендуется: все производственные, бытовые и ливневые воды спускать в пониженные места в сторону от фундаментов или в приемники ливневой канализации и содержать водоотводные сооружения в исправном состоянии; ежегодно все работы по прочистке поверхностных водоотводов, т.е. нагорных канав, кюветов, лотков, водоприемников, отверстий искусственных сооружений, а также ливневой канализации, должны выполняться до начала осенней дождливой погоды. Необходимо проводить периодическое наблюдение за состоянием водоотводных сооружений, все работы по исправлению поврежденных откосов, нарушений планировки и отмосток производить немедленно, не затягивая эти работы до начала промерзания грунтов. Если эти повреждения образовали застой воды на поверхности грунта вблизи фундаментов, следует срочно обеспечить отвод поверхностной воды от фундаментов. При Обнаружении на местности эрозионной деятельности ливневых вод следует срочно ликвидировать размыв грунтов и укрепить участки по водостоку с большим перепадом ливневых вод.

9.2. Предусмотренные по проекту и осуществленные строительством теплоизоляционные покрытия у фундаментов вокруг зданий в виде отмосток на шлаковых или керамзитовых подушках, задернения поверхности грунта или другие покрытия должны поддерживаться в таком состоянии, как это было выполнено по проекту во время строительства. При проведении капитальных ремонтов зданий нельзя допускать перезимовку отапливаемых зданий без отопления, а также замену отмосток вокруг зданий с теплоизоляционными покрытиями на отмостки без теплоизоляционного покрытия.

При капитальных ремонтах зданий нельзя допускать понижения планировочных отметок у выстроенных зданий на сильнопучинистых грунтах, так как глубина заложения фундамента может оказаться меньше расчетной глубины промерзания грунта. Расстояние от наружной стены здания до места срезки грунта должно быть не менее расчетной глубины промерзания грунтов, а если позволяют условия, то следует оставить полосу нетронутого грунта (т.е. без срезки) возле фундаментов шириной 3 м. Исключением из этого требования могут быть только такие случаи, когда расстояние от планировочной отметки до подошвы фундамента, после срезки грунта окажется не менее расчетной глубины промерзания грунтов. При этих работах нельзя нарушать условия поверхностного водоотвода атмосферных вод и других гидромелиоративных устройств, что позволил предотвратить водонасыщение грунтов возле фундаментов зданий и сооружений.

9.3. В период эксплуатации зданий может возникнуть необходимость изменить при реконструкции нагрузку на фундаменты промышленных зданий при смене оборудования или изменении технологических процессов производства, что может нарушить соотношение между силами морозного выпучивания фундаментов и давлением на фундаменты от веса здания.

Часто при повышении нагрузок на фундаменты требуется применять усиление фундаментов. При этом возрастает площадь смерзания грунта с боковой поверхностью фундамента, касательные силы морозного выпучивания увеличиваются пропорционально возрастанию площади смерзания фундамента с грунтом. Следовательно, при проектировании усиления фундаментов (особенно столбчатых) надлежит проверить устойчивость фундаментов на действие касательных сил морозного выпучивания.

Также надлежит проверять расчетом фундаменты под оборудование в холодных цехах или на открытом воздухе, когда тяжелое оборудование заменяется более легким, т.е. при снижении нагрузки на фундамент. Если расчет покажет, что касательные силы морозного выпучивания превышают вес сооружения, то следует применительно к конкретным условиям предусмотреть конструктивные или другие мероприятия против выпучивания фундаментов.

9.4. Предусмотренные проектом участки с травяным покровом нуждаются в ежегодном уходе, который состоит в своевременной подготовке почвенного слоя, подсеве дернообразующих трав и подсадке кустарников. Наличие дернового слоя почти наполовину снижает глубину промерзания грунтов, а кустарниковые насаждения аккумулируют отложения снега, что снижает глубину промерзания более чем в три раза по сравнению с глубиной промерзания на открытой площадке. Все работы по уходу и за дерновым покровом, и за кустарниковыми насаждениями лучше выполнить в весеннее время без нарушения принятой проектом планировки территории. Там, где окажутся нарушены дерновый покров и планировка поверхности грунта вследствие проведения земляных работ по ликвидации аварий подземных коммуникаций или прохождения автомашин необходимо восстановить планировку, взрыхлить растительный слой и вновь посеять семена дернообразующих трав. Лучшими задернителями считаются травосмеси местной флоры. В жаркие и засушливые месяцы требуется поливать дерновый покров и декоративные кустарники, с тем чтобы они не погибли от недостатка влаги.

9.5. Иногда в период промышленной эксплуатации обнаруживаются деформации зданий в виде появления трещин в стенах кирпичной кладки и перекосов у проемов крупноблочных или панельных ограждений. При первом обнаружении деформации конструктивных элементов здания необходимо установить систематическое наблюдение за изменением этих деформаций по установленным на трещинах маякам и по данным нивелировки установленных марок. Все коренные мероприятия по ликвидации имеющихся деформаций следует назначать только после установления причин этих деформаций. В особо сложных случаях администрация предприятия для установления причин деформации и разработки мероприятий должна обратиться в проектный или научно-исследовательский институт.

В индивидуальном строительстве используется заложенный на глубину промерзания грунта ленточный, плитный либо столбчатый фундамент. Сваи погружают до пластов с несущей способностью, которые могут залегать на любом уровне. Подошва фундамента, расположенная ниже отметки промерзания, не испытывает нагрузок от сил пучения. Однако эти силы все равно воздействуют на боковые стенки ленточных фундаментов, свай, столбов, стремясь выдернуть их из земли на поверхность.

Почему грунты вспучиваются?

В большинстве своем почвы , на которых происходит строительство фундаментов, содержат частички глины. Этот материал не пропускает влагу, однако насыщается ею во время дождей либо грунтовыми водами. При замерзании капли внутри глины увеличиваются в объеме в несколько раз, объем грунта увеличивается на 10 – 12%.

Например, в регионах, имеющих глубину промерзания 1,5 м, земля способна подняться на участке на 12 – 17 см, выталкивая размещенные в ней конструкции из бетона. Основная проблема морозного вспучивания выглядит следующим образом:

  • содержание глины в разных пластах неодинаково
  • одни из них содержат больше влаги, чем другие
  • грунт вспучивается неравномерно, перекашивая отдельные участки фундамента

Легкие постройки не могут уравновесить эти подземные силы, достигающие порой 5 т/м 2 . Увеличивая глубину залегания подошвы ленточного фундамента, застройщик полностью решает проблему вспучивания под подошвой. Однако увеличивается площадь боковых поверхностей, на которую действуют касательные нагрузки. Даже если они не смогут выдернуть столб, ленту из почвы полностью, в момент подъема подошвы фундамента на 10 – 15 см в эти пустоты насыпается грунт из прилежащих пластов.

При оттаивании ж/б конструкция не может вернуться в исходное положение, в следующую зиму весь цикл повторяется в том же порядке. Таким образом, уже через несколько лет здание окончательно перекашивается, приходит в аварийное состояние, становится непригодным для эксплуатации.

Способы нейтрализации сил пучения

Для защиты от промерзания грунтов на глубину погружения фундамента наиболее эффективны следующие технологии:

На практике обычно используют несколько перечисленных способов в комплексе. Это позволяет свести вспучивание к минимуму, безопасному для эксплуатации фундамента в конкретных условиях.

Какие фундаменты заглубляются ниже отметки промерзания?

Глубоко заложенная лента обходится застройщику дорого, поэтому данный тип фундамента применяется в проектах с подземным этажом. Чаще всего ниже отметки промерзания располагают фундаменты:

  • столбчатые – подошва в 90% случаев имеет уширение, часто не связанное с телом столба, поэтому силы пучения необходимо компенсировать этим методом
  • ленточные – для коттеджей с цокольным эксплуатируемым этажом
  • свайные – эти конструкции по умолчанию закладываются на большие глубины, так как в верхнем уроне пласт с несущей способностью встречается крайне редко

Плитное основание считается самым дорогим фундаментом. При заглублении его ниже отметки промерзания бюджет возрастает многократно.

Это основание применяется в силу традиций, так как обладает неоправданно высоким бюджетом строительства. Фундаментная лента, заглубленная ниже отметки промерзания, повышает цену м 2 жилища вдвое:

Однако погруженная на глубину ниже отметки промерзания лента остается практически единственным способом получить теплое подполье или полноценный подземный уровень. Это актуально для небольших участков, где горизонтальная застройка нежелательна. Этажность для индивидуальной застройки регламентируется тремя этажами, поэтому цокольный этаж значительно повышает комфортность проживания.

Защита от сил пучения для заглубленной ленты стандартная:

  • утепление наружных стенок
  • обратная засыпка песком, ПГС
  • теплоизоляция отмостки
  • дренаж по периметру подошвы

Утеплитель защищает гидроизоляционный материал, сжимается, принимая часть сил пучения на себя. Второй способ полностью избавляет от присутствия глинистой породы возле стенок ленты. Теплая отмостка не дает промерзнуть почве, дренажем отводится влага.

Для малозаглубленной ленты применяют практически все перечисленные методы борьбы с силами пучения. Однако эти основания коттеджей не могут на 100% заменить заглубленную ленту по комфортности эксплуатации, хотя и выдерживают серьезные нагрузки.

Легкие постройки на МЗЛФ практикуют преимущественно на песках, супесях. Несмотря на комплексную защиту от вспучивания, вероятность подъема почвы все же сохраняется. Легкие стены не смогут достаточно нагрузить фундамент, чтобы компенсировать усилия пучения. В этом случае рекомендуются пенобетонные, газобетонные блоки либо кирпичная кладка.

На ровных участках с нормальными геологическими условиями экономичным решением для легких построек является столбчатый фундамент. Максимальный ресурс конструкции обеспечивают столбы, подошва которых расположена ниже отместки промерзания в регионе. На мелкозаглубленных столбах могут покоиться исключительно надворные постройки, МАФ.

Наиболее популярен монолитный или стаканный столбчатый фундамент, которые в любом случае необходимо гидроизолировать, отсыпать по бокам инертным материалом во избежание сил пучения. Как у индивидуальных застройщиков, так и в околостроительной литературе к столбчатым основаниям часто относят висячие буронабивные сваи в оболочках, подошва которых опущена ниже отметки промерзания .

В отличие от сваи, столб сооружается в откопанном шурфе, а не в пробуренном в земле отверстии. Технология имеет вид:

  • разметка – по обноскам, вынесенным за углы здания, натягиваются шнуры по осям столбов
  • разработка грунта – выкапывается шурф под каждый столб с учетом обеспечения доступа рабочих к бетонным работам
  • подготовка – 20 см слой песка, 20 см слой щебня с уплотнением виброплитой каждых 10 см нерудных материалов, заливка подбетонки (5 – 10 см), гидроизоляция подошвы гидростеклоизолом (2 слоя)
  • уширение – плита 10 – 20 см с горизонтальной арматурной сеткой (стержни 12 мм периодического сечения) с выпуском вертикального армокаркаса на всю высоту столба
  • опалубка – щиты, асбоцементная, полиэтиленовая труба большого диаметра
  • бетонирование – укладка смеси, уплотнение наконечником глубинного вибратора
  • гидроизоляция – после распалубки на 4 – 15 день после набора прочности бетоном 70%
  • обратная засыпка – пазухи шурфа заполняются ПГС или песком с послойным уплотнением материала

Таким образом, залегание подошвы столба ниже отметки промерзания гарантирует отсутствие сил пучения снизу. Обратная засыпка минимизирует выдергивающие нагрузки столба касательными усилиями.

Ввиду максимального бюджета строительства плавающей плиты, эти конструкции редко заглубляются ниже отметки промерзания. Однако погруженный на эту глубину плитный фундамент является самым долговечным из всех существующих, позволяет изготовить полноценный подвальный этаж. Конструкция имеет вид:

Сборные нагрузки от здания передаются на стены подвала, равномерно распределяются плитой по фундаментной подушке из инертных материалов (щебень, песок). Запас прочности плит глубокого заложения многократно превосходит необходимое значение, позволяя строить 3-х этажные кирпичные особняки с тяжелыми кровлями, облицовками стен, фасадов.

Существуют кессонные плиты, заливаемые по мету в опалубку сложной конфигурации:

Это самый экономичный вариант получить классический плитный фундамент с винным погребком или подземным сооружением для хранения овощей, размещения коммуникаций. Глубина подошвы погреба гарантированно находится ниже отметки промерзания. Это позволяет сохранить геотермальное тепло недр, не позволяющее пучнистым грунтам промерзнуть. Гидроизоляция конструкций обязательна, поскольку, даже при низком УГВ грунтовые воды могут иметь сезонные перепады уровня.

Свайный фундамент

В отличие от всех существующих фундаментов, для свай отметка промерзания не имеет особого значения. Минимально допустимая глубина погружения винтовых, буронабивных конструкций для жилища составляет 3 м, что гораздо больше отметки промерзания в большинстве регионов.

Площадь боковых поверхностей свай (диаметр 15 – 60 см) незначительна, выдергивающие усилия пучнистых грунтов в данном случае минимальны. Однако несущая способность свайных фундаментов на 70% зависит от расчетного сопротивления грунтов под пятой. Поэтому производятся геологические изыскания в пятне застройки либо пробное вкручивание.

В последнем случае глубина залегания несущего пласта (расчетное сопротивление 4 – 6 кг/см 2) определяется по резкому увеличению усилия затяжки. После чего, все сваи погружаются на этот уровень, опираясь на несущий пласт.

Таким образом, из всех существующих фундаментов ниже отметки промерзания не заглубляются:

  • плавающая плита – за счет максимальной опорной поверхности, двухслойного армирования успешно противостоит подвижкам грунта, утеплением подошвы (вариант шведской плиты УШП) полностью ликвидируются силы пучения, земля не может промерзнуть
  • мелкозаглубленная лента МЗЛФ – грунт под подошвой заменяют инертным материалом, утепляют отмостку, укладывают кольцевой дренаж
  • малозаглубленные столбы – применяются исключительно для надворных построек, часто требуют ремонта на пучнистых грунтах

Все остальные фундаменты погружают ниже отметки промерзания в регионе, обеспечивая максимальную несущую способность, ресурс конструкции.

Заглубление подошвы фундамента ниже отметки промерзания позволяет стабилизировать геометрию пространственной конструкции, повысить долговечность. Однако этот способ для индивидуального строителя обходится дороже мелкозаглубленной ленты МЗЛФ, винтовых, буронабивных свай. Поэтому применяется исключительно при наличии в проекте подвального этажа.

Выбор редакции
Вице-адмирал Лиланд Ловетт (командовал эскадрой, которая 7 ноября 1942 года произвела высадку англо-американских войск в Северной Африке)...

При диагностике различных урогенитальных патологий у мужчин берут особый анализ, позволяющий выявить наличие инфекции, которая могла...

Регистрация счет-фактуры на аванс необходима только в том случае, если предоплата контрагентом поступила на счет продаваемой организации,...

Кондиломы остроконечные являются не чем иным, как телесными выростами или бородавками, которые, как правило, образуются в зоне наружных...
Для проведения инвентаризации есть специальный документ - «Инвентаризация товаров на складе». С помощью данного документа вы можете...
Выписка банка в 1С 8.3 Бухгалтерия необходима для отражения списания и поступления денежных средств по безналичному расчету. Она отражает...
У птиц очень развита забота о потомстве, которая проявляется, кроме строительства гнезда и насиживании кладки, в выкармливании птенцов, в...
Страшные сказки. Истории, полные ужаса и жути Посвящается Дот, с благодарностью Введение Не пугайте детей В самом начале XIX...
Алёша Попович — фольклорный собирательный образ богатыря в русском былинном эпосе. Алёша Попович как младший входит третьим по значению...