Самый крупный потребитель электроэнергии в хозяйстве промышленность. Крупным потребителям электроэнергии придется доплатить. Структура и показатели использования установленной мощности


Часть первая.
Тепловая электроэнергетика

Статья опубликована при поддержке компании, помогающей в оформлении различных документов. Ищете предложения, например, "Оформляем удостоверение машиниста мостового крана " или "Помогаем оформить строительные удостоверения (повышение и подтверждение квалификации)"? Тогда загляните на сайт 5854081.ru, и уверены, в списке услуг, предоставляемых компанией, Вы обязательно найдете те, в которых нуждаетесь. Строительные удостоверения оформляются специалистами компании согласно требованиям ОТ и ТБ, при оформлении удостоверения сварщика, монтажника, охраны труда и т.д. выдается сам документ, копия протокола, копия лицензии комбината (при необходимости), оформлявшего аттестацию, а при оформлении удостоверения электромонтера, электромонтажника, ответственного за электрохозяйство, выдается журнал, оформленный на организацию, подававшую заявку. Со списком документов, необходимых для оформления документов, а также с расценками на услуги, оказываемые компанией, можно ознакомиться на сайте 5854081.ru.

Электроэнергетика как отрасль хозяйства объединяет процессы генерирования, передачи, трансформации и потребления электроэнергии. Одна из главных специфических особенностей электроэнергетики состоит в том, что ее продукция в отличие от продукции остальных отраслей промышленности не может накапливаться для последующего использования: производство электроэнергии в каждый момент времени должно соответствовать размерам потребления (с учетом потерь в сетях). Вторая особенность - универсальность электрической энергии: она обладает одинаковыми свойствами независимо от того, каким образом она была произведена - на тепловых, гидравлических, атомных или каких-либо иных электростанциях, и может быть использована любым потребителем. Передача электроэнергии, в отличие от других энергетических ресурсов, осуществляется мгновенно.
Размещение генерирующих мощностей электроэнергетики зависит от двух основных факторов: ресурсного и потребительского. До появления электронного транспорта (линий электропередачи) электроэнергетика ориентировалась главным образом на потребителей, используя привозное топливо. В настоящее время, после постройки сетей высоковольтных ЛЭП и создания единой энергетической системы России (ЕЭС) большее внимание при размещении электростанций уделяется ресурсному фактору.
В 2003 г. в России было произведено 915 млрд кВт·ч электроэнергии, на тепловых электростанциях выработано 68% этого объема (в том числе 42% при сжигании газа, 17% - угля, 8% - мазута), на гидравлических - 18%, на атомных - 15%.
Тепловая энергетика производит свыше 2/3 электроэнергии страны. Среди тепловых электростанций (ТЭС) различают конденсационные электростанции (КЭС) и теплоэлектроцентрали (ТЭЦ). Первые производят только электроэнергию (отработанный в турбинах пар конденсируется обратно в воду и снова поступает в систему), вторые - электроэнергию и тепло (нагретая вода идет к потребителям в жилые дома и на предприятия). ТЭЦ располагаются вблизи крупных городов или в самих городах, так как дальность передачи горячей воды не превышает 15-20 км (потом вода остывает). Например, в Москве и под Москвой существует целая сеть ТЭЦ, некоторые из них имеют мощность более 1 тыс. МВт, то есть больше многих конденсационных ТЭС. Таковы, например, ТЭЦ-22 у Московского нефтеперерабатывающего завода в Капотне, ТЭЦ-26 на юге Москвы (в Бирюлево), ТЭЦ-25 в Очаково (юго-запад), ТЭЦ-23
в Гольяново (северо-восток), ТЭЦ-21 в Коровино (на севере).

Основные потребители электроэнергии в России,
2004 г.

Потребители Доля потребленной
электроэнергии,
%
Доля потребленной
тепловой энергии,
%
Промышленность 48,9 30,8
в том числе топливная 12,0 7,6
черная металлургия 7,1 0,7
цветная металлургия 9,0 2,1
химия и нефтехимия 5,4 8,9
машиностроение
и металлообработка
6,5 4,7
деревообрабатывающая
и целлюлозно-бумажная
1,8 0,9
промышленность
строительных материалов
2,1 0,6
легкая 0,8 0,6
пищевая 1,4 0,5
Сельское хозяйство 3,4 1,2
Транспорт и связь 11,5 1,5
Строительство 0,9 1,0
Жилищно-коммунальное хозяйство 14,0 45,0
Население 8,0 6,0
Прочие отрасли 13,3 14,5

По данным РАО «ЕЭС»

Тепловые энергетические установки в отличие от гидроэлектростанций размещаются относительно свободно и способны вырабатывать электричество без сезонных колебаний, связанных с изменением стока. Их строительство ведется быстрее и связано с меньшими затратами труда и материальных средств. Но электроэнергия, полученная на ТЭС, относительно дорогостоящая. Конкурировать с ГЭС и АЭС могут лишь энергоустановки, использующие газ. Себестоимость электроэнергии, выработанной на угольных и мазутных ТЭС выше в 2-3 раза.

Средняя себестоимость
производства электроэнергии,
коп. за кВт·ч, ноябрь 2004 г.

По данным РАО «ЕЭС»

По характеру обслуживания потребителей тепловые электростанции могут быть районными (ГРЭС), которые имеют большую мощность и обслуживают большую территорию, часто 2-3 субъекта федерации, и центральными (располагаются вблизи потребителя). Первые в большей степени ориентированы на сырьевой фактор размещения, вторые - на потребительский.
ТЭС, использующие уголь, располагаются на территории угольных бассейнов и близ них в условиях, при которых затраты на транспортировку топлива относительно невелики. Примером может служить вторая по мощности в стране Рефтинская ГРЭС под Екатеринбургом, работающая на кузнецком угле. Много подобных установок в пределах Кузбасса (Беловская и Томь-Усинская ГРЭС, Западно-Сибирская и Ново-Кемеровская ТЭЦ), электростанции Канско-Ачинского бассейна (Березовская ГРЭС-1 и Назаровская ГРЭС), Донбасса (Новочеркасская ГРЭС). Единичные ТЭС расположены у небольших угольных залежей: Нерюнгринская ГРЭС в Южно-Якутском бассейне, Троицкая и Южно-Уральская ГРЭС близ угольных бассейнов Челябинской обл., Гусиноозерская ГРЭС у одноименного месторождения на юге Бурятии.

Крупнейшие тепловые электростанции России

Название Размещение Установленная
мощность,
МВт
Основное
топливо
Энерго-
система
1 Сургутская ГРЭС-2 г. Сургут, Ханты-Мансийский
а. о.
4800 Газ ОЭС Урала
2 Рефтинская ГРЭС г. Асбест, Свердловская обл. 3800 Уголь ОЭС Урала
3 Kостромская ГРЭС г. Волгореченск, Kостромская обл. 3600 Газ ОЭС Центра
4 Сургутская ГРЭС-1 г. Сургут, Ханты-Мансийский
а. о.
3280 Газ ОЭС Урала
5 Рязанская ГРЭС г. Новомичуринск, Рязанская обл. 2640 Газ ОЭС Центра
6 Ириклинская ГРЭС пос. Энергетик, Оренбургская обл. 2430 Газ ОЭС Урала
7-10 Заинская ГРЭС г. Заинск,Респ. Татария 2400 Газ ОЭС Средней Волги
7-10 Kонаковская ГРЭС г. Kонаково, Тверская обл. 2400 Газ ОЭС Центра
7-10 Пермская ГРЭС г. Добрянка, Пермская обл. 2400 Газ ОЭС Урала
7-10 Ставропольская ГРЭС пос. Солнечнодольск, Ставропольский край 2400 Газ ОЭС Северного Kавказа
11 Новочеркасская ГРЭС г. Новочеркасск, Ростовская обл. 2112 Уголь ОЭС Северного Kавказа
12 Kиришская ГРЭС г. Kириши, Ленинградская обл. 2100 Мазут ОЭС Северо-Запада

По данным РАО «ЕЭС»

ТЭС, работающие на мазуте, ориентированы на центры нефтепереработки. Типичный пример - Киришская ГРЭС при Киришском НПЗ, обслуживающая Ленинградскую обл. и Санкт-Петербург. Сюда же можно отнести Волжскую ТЭЦ-1 под Волгоградом, Ново-Салаватскую и Стерлитамакскую ТЭЦ в Башкирии.
Газовые ТЭС размещаются как в местах добычи этого сырья (крупнейшие в России Сургутские ГРЭС 1 и 2, Нижневартовская ГРЭС, Заинская ГРЭС в Татарии), так и за многие тысячи километров от нефтегазовых бассейнов. В этом случае топливо поступает на электростанции по трубопроводам. Газ как топливное сырье для ТЭС дешевле и экологичнее мазута и угля, его транспортировка не так сложна, технологически его использовать выгоднее. Работающие на газе электростанции преобладают в Центральной России, на Северном Кавказе, в Поволжье и Приуралье.
Крупнейшее в России средоточие ТЭС - Подмосковье. Здесь имеются два кольца крупных теплоэнергетических установок: внешнее, представленное ГРЭС (Шатурская и Каширская, построенные по плану ГОЭЛРО, а также Конаковская), и внутреннее - московские ТЭЦ. Если рассматривать Москву как единый энергетический узел, то ему не будет равных по величине в нашей стране. Суммарная мощность этих энергоустановок чуть меньше 10 тыс. МВт, что превосходит установленную мощность Сургутских ГРЭС.
Ныне основная часть подмосковных ТЭЦ работает на газе, хотя некоторые из них строились под иное топливо: уголь (Кашира) или торф (Шатура). Руководство Шатурской ГРЭС уже в ближайшее время намерено снова вернуться к лежащему буквально у ног мещерскому торфу как основному энергоносителю, резервными источниками останется газ и станет кузнецкий уголь (сжигать подмосковный уголь на Шатурской ГРЭС стало нерентабельно).


Атомная энергетика (АЭС)

Доля АЭС в мировой энергетике выросла до 17% в 2002 году, но к 2016 году несколько снизилась до 13.5%:

Общее число работающих ядерных реакторов:

Мировая атомная энергетика восстанавливается после кризиса вызванного аварией на японской АЭС Фукусима . В 2016 году на АЭС было выработано электроэнергии объемом около 592 млн. тонн н.э. против 635 млн. тонн н.э. в 2006 году. Мировое производство энергии на АЭС (млн. тонн н.э.):

Крупнейшими производителями электричества на АЭС (больше 40 млн. тонн н.э.) являются США , Франция , Китай и Россия . До недавнего времени в этот список входили Германия и Япония .


Как видно из графика наиболее активно сегодня атомная энергетика развивается в Китае и России . В настоящее время именно в этих странах строится наибольшее число АЭС :

Число работающих ядерных реакторов по странам:

Возраст работающих ядерных реакторов:

Число включаемых и выключаемых ядерных реакторов:

Большинство АЭС работают около 80% своего времени:

Считается, что уран (топливо для АЭС ) также является исчерпаемым ресурсом. добычи и потребления урана на 2015 год:

Основные производители урана в 2007-2016 годах:

Мировые запасы урана:

В настоящее время в России развивается направление атомных станций на быстрых нейтронах (замкнутого цикла), которые позволят решить проблему отработанного топлива и многократно уменьшить потребление урана. Кроме того обсуждается возможность добычи урана из океанской воды. По оценкам запасы урана в океанской воде составляют около 4.5 миллиардов тонн, что эквивалентно 70 тысячам лет современного потребления.

Одновременно продолжают развиваться технологии термоядерного синтеза. В настоящее время с 2013 года во Франции сооружается экспериментальная термоядерная установка ITER . Общие затраты на международный проект оцениваются в 14 миллиардов долларов. Ожидается, что завершение строительства этой установки произойдет в 2021 году. На 2025 год запланировано начало первых испытаний, на 2035 года полномасштабная эксплуатация установки. После создания ITER планируется создать к середине 21 века ещё более мощный термоядерный реактор DEMO :

Подробнее о развитие направления ядерных и термоядерных реакторов можно прочитать в блоге .

Гидроэлектростанции (ГЭС)

Гидроэнергетика в настоящее время является самым крупным источником возобновляемой энергии. Мировая выработка гидроэнергии выросла с середины 20 века в несколько раз (в 2016 году рост на 2.8% до 910 тонн н.э. по сравнению со среднегодовым ростом в 2.9% в 2005-2015 годы):

В то же время доля гидроэнергии в мировой энергетике за указанный период выросла всего с 5.5% до 7%:

Крупнейшими производителями гидроэнергии являются Китай , Канада , Бразилия , США , Россия и Норвегия .
Из этих стран, 2016 год стал рекордным по выработке гидроэлектроэнергии для Китая , России и Норвегии . В остальных странах максимумы пришлись на прошлые годы: Канада (2013 год), США (1997 год), Бразилия (2011 год).

Мировой гидропотенциал оценивается почти в 8 тысяч терраваттчасов (в 2016 году выработка гидроэнергии составила около 4 тысяч терраваттчасов).

СА - Северная Америка, ЕВ - Европа, ЯК - Япония и Республика Корея, АЗ - Австралия и Океания, СР - бывший СССР, ЛА - Латинская Америка, БВ - Ближний Восток, АФ - Африка, КТ - Китай, ЮА - Южная и Юго-Восточная Азия.

Дешевыми (категория 1) считаются гидроресурсы, обеспечивающие производство электроэнергии со стоимостью не выше чем тепловые электростанции на угле. Для более дорогих ресурсов стоимость электроэнергии возрастает в 1,5 раза и более (до 6-7 цент/кВт ч). Почти 94% из еще не используемых дешевых гидроресурсов сосредоточено в пяти регионах: бывшем СССР, Латинской Америке, Африке, Южной и Юго-Восточной Азии и Китае (табл. 4.10). Вполне вероятно, что п ри их освоении возникнет ряд дополнительных проблем, в первую очередь экологических и социальных, связанных, в частности, с затоплением больших территорий.

Особенностью гидроэнергетики России, Латинской Америки, Африки и Китая является большая удаленность районов богатых гидроресурсами от центров потребления электроэнергии. В Южной и Юго-Восточной Азии значительный гидропотенциал сосредоточен в горных районах материка и на островах Тихого океана, где часто нет адекватных потребителей электроэнергии.

Более половины из оставшихся для освоения дешевых гидроресурсов находится в тропической зоне. Как показывает опыт существующих здесь ГЭС, устройство в таких районах крупных водохранилищ неизбежно порождает комплекс тяжелых экологических и социальных (в том числе медицинских) проблем. Гниение водорослей и «цветение» стоячей воды настолько ухудшают ее качество, что она становится непригодной для питья не только в водохранилище, но и ниже по течению реки.

В условиях тропического климата водохранилища оказываются источником многих заболеваний (малярия и т.п.).
Учет отмеченных обстоятельств и ограничений может перевести часть дешевых ресурсов в категорию дорогих и даже вывести за пределы экономического класса.

20 стран с наибольшим резервом по :



Карта расположения крупнейших ГЭС в 2008 и 2016 годах:



Расположения крупнейших строящихся и планируемых ГЭС на 2015 год:

Таблицы крупнейших нынешних и строящихся ГЭС :

Строительство ГЭС сталкивается с большим сопротивлением экологов, которые сомневаются в целесообразности подобного типа электростанций в связи с затоплением больших площадей во время создания водохранилищ. Так в первой десятке крупнейших искусственных водохранилищ (по общей площади) нет ни одного, которое было создано после 70х годов 20 века:

Похожая ситуация среди крупнейших водохранилищ по объему:

Создание крупнейшего по площади водохранилища в Гане (озеро Вольта ) привело к переселению около 78 тысяч человек из зоны затопления. Проекты поворота рек на юг существовали не только в СССР , но и в США. Так в 50х годах был разработан план NAWAPA (North America Water and Power Alliance) , который предусматривал создание судоходных путей от Аляски до Гудзонова залива , и переброски воды в юго-западные засушливые штаты США .

Одним из элементов плана должна была стать 6 ГВт-ая ГЭС на реке Юкон с площадью водохранилища в 25 тысяч км2.

Биотопливо

Производство биотоплива также характерно быстрым ростом. В 2016 году производство биотоплива составило 82 млн. тонн н.э. (рост на 2.5% по сравнению с 2015 годом). Для сравнения в период с 2005-2015 годы производство биотоплива росло в среднем на 14%.

С 1990 по 2016 годы доля биотоплива в мировой энергетике выросла с 0.1% до 0.62%:

Крупнейшими производителями биотоплива являются США и Бразилия (около 66% мирового производства):

В настоящее время для производства биотоплива используется около 30 миллионов гектаров земли. Это примерно 1% от всех сельскохозяйственных угодий планеты (около 5 миллиардов гектаров, из них пашня около 1 миллиарда гектаров). Структура селькохозяейственных угодий планеты:

К началу 19 века мировая площадь искусственно орошаемых земель составляла 8 млн. га, к началу 20 века — 40 млн. и к настоящему времени — 207 млн. га.

В то же время в США на производство биотоплива уходит больше третьей части урожая зерновых:

Мировое производство зерновых в 1950-2016 годах:

Рост производства зерновых в мире в основном был связан с ростом урожайности при слабых изменениях посевных площадей:

Ветровая энергетика (ВЭС)

Мировое производство этого вида энергии также быстро растет со временем. В 2016 году рост составил 15.6% (с 187,4 до 217,1 млн. тонн н.э.). Для сравнения среднегодовой рост в 2005-2015 годы составлял 23%.

Доля в мировой энергетике выросла до 1.6% в 2016 году:



Крупнейшими производителями энергии из ветра являются Китай , США, Германия, Индия и Испания :

Быстрый рост производства энергии из ветра продолжается во всех этих странах, кроме Германии и Испании . В них максимум производства энергии из ветра достигнут в 2015 и 2013 годах соответственно. Другие страны с крупным производством энергии из ветра:

Средний фактор загрузки в мире равен 24-27%. Для разных стран этот параметр сильно различается: от 39.5% для Новой Зеландии (34-38% в Мексике , 33-36% в США , 36-43% в Турции , 36-44% в Бразилии , 39% в Иране , 37% в Египте ) до 18-22% в Китае , Индии и Германии . По оценкам потенциал ветровой энергетики в 200 раз превышает текущие потребности человечества (второе место после солнечной энергетики):

Весь вопрос лишь в том, что эта энергия является очень непостоянной.

Солнечная энергетика (СЭС)

Производство энергии Солнца быстро растет: только с 2015 по 2016 год оно выросло с 58 до 75 млн. тонн н.э. (на 29.6%). Для сравнения среднегодовой рост за 2005-2015 годы составил 50.7%.

К 2016 году доля солнечной энергетики в мировой энергетике выросла до 0.56%:

Крупнейшими производителя солнечной энергии являются Китай , США , Япония , Германия и Италия :

Из них производство энергии замедлилось в Германии и Италии : c 8.8 и 5.2 до 8.2 и 5.2 млн. н.э. в 2015 и 2016 годах соответственно. Также быстрый рост производства солнечной энергии наблюдается и в других странах:

Средний фактор загрузки для мира равен около 10-13%. В то же время он сильно колеблется от 29-30% для Испании и 25-30% для ЮАР до 11% в Германии . Считается, что солнечная энергетика обладает наибольшим ресурсным потенциалом:

Весь вопрос заключается в непостоянстве этой энергии.

Производство энергии из биомассы (биогаза), геотермальной энергии и других экзотических направлений энергетики (к примеру, приливной энергетики)

Отчет BP показывает значительный рост подобных направлений за последние десятилетия:

В 2016 году рост по сравнению с прошлым годом составил 4.4% (с 121 до 127 млн. тонн нефтяного эквивалента). Для сравнения среднегодовой рост за период в 2005-15 годы был равен 7.7%. Доля в мировой энергетике этого направления выросла с 0.03% в 1965 году до 0.96% в 2016 году:

Крупнейшими производителями подобной энергии являются США , Китай , Бразилия и Германия :

Кроме того большое производство подобной энергии осуществляется в Японии , Италии и Великобритании :


Глобальное потепление:

Кроме перечисленных источников энергии важным фактором мировой энергетики является климатические изменения. В перспективе глобальное потепление может значительно снизить затраты цивилизации на отопление, которые являются одними из основных затрат энергии для северных стран. Потепление является наиболее сильным именно для северных стран, и именно в зимние месяцы (наиболее холодные месяцы).

Карта среднегодовых температурных трендов:

Карта температурных трендов за холодный сезон (ноябрь - апрель):

Карта температурных трендов за зимние месяцы (декабрь - февраль):

Объем мировых выбросов СО2 :

Максимум выбросов был достигнут в 2014 году: 33342 млн. тонн. С тех пор произошло некоторое снижение: в 2015 и 2016 года объём выбросов составил 33304 и 33432 млн. тонн соответственно.

Заключение

Из-за ограниченного размера поста мне не удалось подробно осветить наиболее быстро развивающееся направления мировой энергетики (СЭС и ВЭС ), где наблюдается ежегодный рост на десятки процентов (вместе с огромными потенциальными ресурсами для освоения). Если есть желание читателей, то можно будет рассмотреть эти направления в следующих постах более детально. В целом, если взять динамику за последний год (2015-2016 годы), то мировая энергетика за этот период выросла на 171 млн. тонн н.э.. Из них:
1) + 30 млн. тонн н.э. - ВЭС
2) + 27 млн. тонн н.э. - ГЭС
3) + 23 млн. тонн н.э. - нефть
4) + 18 млн. тонн н.э. - природный газ
5) + 17 млн. тонн н.э. - СЭС
6) + 9 млн. тонн н.э. - АЭС
7) + 6 млн. тонн н.э. - экзотические ВИЭ (биомасса, биогаз, геотермальные ЭС, приливные ЭС)
8) + 2 млн. тонн н.э. - биотопливо
9) - 230 млн. тонн н.э. - уголь

Это соотношение показывает, что борьба за экологию в мире набирает обороты - использование ископаемого топлива сокращается (особенно угля) с одновременным наращиванием использования ВИЭ . В то же время остаётся проблема непостоянства и дороговизны ВИЭ (доступных технологий для аккумулирования этой энергии по прежнему нет), развитие которых в значительной мере стимулируется за счет государственных субсидий. В связи с этим интересно мнение читателей о том, какой источник энергии станет главным к середине 21 века (сейчас это нефть - 33% мировой энергетики в 2016 году).

Какой источник энергии будет главным в мировой энергетике в 2050 году?

Предприятия по производству алюминия – самые крупные потребители электроэнергии в мире. На их долю приходится примерно 1% всей производимой электроэнергии за единицу времени и 7% энергии, потребляемой всеми промышленными предприятиями в мире

На Красноярском экономическом форуме Олег Дерипаска не смог ответить на вопрос жителей, почему его предприятия минимизируют налоговую нагрузку до неприличных цифр, почему травят города, платят слишком маленькие зарплаты и пенсии, зато заявил о том, что "РусАл" вскоре может объявить масштабную программу строительства новых генерирующих мощностей.

"Мы в ближайшее время объявим программу строительства новых мощностей объемом порядка 2 ГВт", - сказал он. Программа связана с вводом Богучанского комплекса в 2012-2013 годах и развитием собственной генерации для обеспечения потребления предприятий "РусАла" в Сибири.

Какой ценой и за чей счет будут реализовываться эти планы?

Некоторые ответы на этот вопрос будут понятны из приведенных ниже материалов доклада, изданного International Rivers Network еще в 2005 году и переведенного потом на русский язык М. Джонсом и А Лебедевым

Предприятия по производству алюминия – самые крупные потребители электроэнергии в мире. На их долю приходится примерно 1% всей производимой электроэнергии за единицу времени и 7% энергии, потребляемой всеми промышленными предприятиями в мире. Практически вся электроэнергия, которая необходима в производстве алюминия (2/3 энергозатрат всего объема мировой промышленности), расходуется при плавлении слитков алюминия в плавильных цехах. Общий расход электроэнергии в производстве первичного алюминия, т.е. его слитков в плавильных цехах, варьируется от 12 до 20 МВт/час на тонну алюминия, что составляет 15,2-15,7 МВт/час на тонну всего объема мировой промышленности.

Около половины всей электрической энергии, потребляемой алюминиевой промышленностью, производится на гидроэлектростанциях, и этот показатель будет расти в ближайшие годы. Другие источники энергии составляют: 36% - угольная, 9% - природный газ, 5% - атомная, 0,5% - нефтяная. Гидростанции, служащие источником электроэнергии для плавки алюминия, распространены в Норвегии, России, странах Латинской Америки и США и Канаде. Уголь в основном применяется в странах Океании и Африки.

За последние 20 лет многие предприятия по выплавке алюминия в промышленно развитых странах были закрыты. На смену старым пришли новые плавильные цеха, в которых денежные и трудовые затраты ниже, чем затраты на энергию. Она остается основным компонентом себестоимости первичного алюминия, однако по-прежнему составляет 25%-35% от общей суммы производственных расходов. Согласно данным предприятий по производству алюминия, компании, которые платят более $35 за МВт/час, оказываются неконкурентоспособны и вынуждены закрывать свои производства или пересматривать структуру затрат на энергию.

Менее затратным является доступ к сырью - бокситу, который можно перевозить морем за относительно небольшую плату. Производство алюминия постепенно «мигрирует» из США и Канады, Европы и Японии в страны Азии и Африки, имеющие мощный производственный потенциал.

Несмотря на существенные сдвиги в энергосекторе многих промышленно развитых стран, такие как приватизация и дерегулирование предприятий, роль государства все еще играет важную роль в ценообразовании производителей энергии и их субсидировании. Это приводит к выбросу на рынок огромного количества дешевой энергии, которая, вместе с приватизацией и дерегулированием, существенно влияет на принятие решений по размещению новых заводов по выплавке алюминия. Субсидии на самом деле осложняют попытки повысить эффективность алюминиевых производств и уменьшить объемы потребления энергии.

К примеру, угольная промышленность получает прямую грантовую поддержку государства в Великобритании и Германии. Энергия, потребляемая предприятиями по производству алюминия в Австралии и Бразилии, субсидируется правительствами этих стран. Кроме того, международные банки развития предлагают выгодные кредиты гидростанциям, свзанным с алюминиевой отраслью в Аргентине и Венесуэлле.

Исследование строительства плотины в Тукуруме (TucuruМ) в Бразилии, проведенное Всемирной комиссией по плотинам, показало, что плавильные предприятия Альбрас/Алюнорте (AlbrАs/Alunorte) и Алюмар (Alumar) получили порядка $193-411 миллионов субсидий на потребление энергии в год от компании, находящейся в собственности государства. Плавильные предприятия с недавнего времени стали применять новую стратегию: они угрожают закрытием и выводом производств из страны, чтобы получить новые долгосрочные субсидии на энергию по ставкам значительно ниже тех, что приходится платить другим предприятиям. При этом более 70% производимого алюминия с этих заводов экспортируется.

Существует множество примеров, показывающих резкое падение рентабельности алюминиевых компаний после прекращения субсидий на электроэнергию. Плавильное предприятие Валько (Valco) компании Кайзер (Kaiser) сократило выпуск продукции по истечении контракта с правительством Ганы: в этой стране производится самая дешевая в мире энергия - 11 центов за КВт, или 17% от реальной стоимости производства единицы энергии. В январе 2005 г. компания Алькоа подписала меморандум о взаимопонимании с правительством Ганы для возобновления работ в плавильных цехах по ставкам на энергию, которые не афишируются.

Предоставление субсидий энергоемким предприятиям оказывает значительное негативное влияние на планирование развития энергетического сектора страны. Несмотря на то, что только 4,7% населения Мозамбика имеют доступ к электроэнергии, алюминиевые производства BhpBilliton, Mitsubishiи IDC"sMozalудвоили мощность, а значит потребление энергии у них будет в 4 раза больше объема электричества, используемого на другие цели по всей стране.

Алюминий способствует потеплению климата Земли

Газы, вызывающие потепление климата, часто поступают в атмосферу с алюминиевых плавильных производств, - в частности СО2, CF4 и C2 F6. Главным источником выбросов СО2 является производство энергии, необходимой для выплавки алюминия и получаемой посредством сжигания ископаемого топлива. Кроме того, оказалось, что гидроэлектростанции, расположенные в тропических экосистемах, также выбрасывают значительное количество парниковых газов.

Австралия – яркий тому пример, т.к. австралийские алюминиевые производства получают электроэнергию со станций, работающих на угле. Эти станции выбрасывают 86% СО2 от всего объема этого газа, поступающего в атмосферу с плавильных предприятий, или 27 млн тонн в год. Это 6% от всех выбросов парниковых газов в Австралии. Однако, при этом следует учесть, что алюминиевая отрасль составляет лишь 1,3% ВВП, приходящегося на долю промышленных производств Австралии. Алюминий и продукция из него являются вторыми по важности, после угля, товарами, входящими в экспортный сектор страны. Данное обстоятельство негативно отразилось на политике страны по использованию возобновляемых источников энергии и развитию торговли выбросами СО2 - основных рыночных механизмах по уменьшению «вклада» Австралии в потеплении климата Земли. К примеру, Австралия в настоящее время занимает одно из лидирующих положений среди стран, для которых характерен высокий объем выбросов парниковых газов на душу населения.

Производство алюминия в Австралии увеличилось на 45% с 1990 г., и, скорее всего, продолжит расти в будущем. В то время, как фактические «прямые» выбросы парниковых газов снизились на 24% по сравнению с 1990 годом (до 45% на тонну), «непрямые» выбросы этих газов, образующиеся в процессе производства электроэнергии, выросли на 40% за тот же срок. Таким образом, увеличение производства алюминия фактически свидетельствует о повышении выбросов СО2 в атмосферу на 25%.

Выплавка алюминия, основанная на использовании ископаемого топлива, нецелесообразна с экологической точки зрения. Промышленные предприятия Австралии производят парниковых газов в 5 раз больше, чем сельское хозяйство, в 11 раз больше, чем горнодобывающая отрасль и в 22 раза больше, чем любая другая отрасль в расчете на доллар национальной экономики. В мировом масштабе алюминиевая промышленность производит в среднем 11 тонн СО2 на тонну первичного алюминия за счет сжигания ископаемого топлива.

PFC– одни из самых опасных парниковых газов, которые формируются в результате так называемого явления поляризации в электролитах, когда электролит растворяется в оксиде алюминия во время плавления. PFCспособны довольно долго пребывать в атмосфере – до 50000 лет, и при этом считаются в 6500 – 9200 раз опаснее, чем другие парниковые газы, в частности, СО2. По оценкам специалистов, производство алюминия было причастно к 60% выбросов PFCв мире в 1995 г., несмотря на то, что за последние 20 лет, благодаря контролю за выбросами, объем этих газов на тонну алюминия снизился.

Потепление климата – одна из самых актуальных сегодня проблем. Сейчас, когда в силу вступил Киотский протокол, активистам всех стран необходимо поставить вопрос об обоснованности проектов по производству алюминия, учитывая объемы выбросов парниковых газов в атмосферу этими предриятиями. Это должно стать решающим аргументом при рассмотрении вариантов промышленного развития отдельной страны. Компании национального и регионального уровня должны взаимодейстовать с международными, создающими преграды государственному субсидированию крупных алюминиевых предприятий и электростанций на ископаемом топливе и предлагающими экологически менее опасные альтернативы экономического развития. Кроме того, необходимо провести дополнительное исследование по оценке объемов парниковых газов, выделяемых тропическими зонами, поскольку большинство плавильных цехов работают на электричестве, вырабатываемом здесь на гидроэлектростанциях.

Ледники и алюминий
Новые проекты плотин и плавильных заводов на территории Исландии и Чили ставят под угрозу существование последних экологически чистых экосистем на планете. Компания Alcoaстроит гидроэлектрический комплекс KarahnjukarHydropower, представляющий собой серию крупных плотин, водохранилищ и тоннелей. Они самым негативным образом отразятся на окружающей среде центральных высокогорий Исландии - второй по величине территории нетронутой природы в Европе, и это воздействие может оказаться необратимым. Проект Karahnjukarбудет состоять из 9 ГЭС, которые перекроют и заставят изменить течение несколько рек, возникших в ледниковый период, в районе самого крупного в Европе ледника Vatnajoekull.
Компания Alcoaбудет использовать вырабатываемую энергию на алюминиевом заводе, возведенном на исландском побережье, мощность которого составит 322000 тонн алюминия в год. Для этой территории характерно большое видовое разнообразие флоры и фауны, в частности здесь гнездятся розово-лапчатый гусь, малиновый перевозчик и плавунчик. Экологи обеспокоены проблемами заиления территории и размещения дамбы в вулканически активной местности. Проект находится в стадии реализации, но забастовки рабочих против компании Impregiloзначительно нарушили график выполнения работ по проекту: профсоюзы говорят о нарушениях исландского законодательства вследствие использования на строительстве дешевой рабочей силы из других стран, Решением исландского суда компания Алькоа (Alcoa) обязана провести новую оценку воздействия проекта на окружающую среду.

Канадская компания Norandaпланирует начать в Патагонии (Чили) строительство плавильного завода мощностью 440000 тонн/год и стоимостью $2,75 миллиардов. Для снабжения предприятия Alumysaэлектричеством компания предложила создать 6 ГЭС общей мощностью 1000 МВт. В комплекс будут также входить глубоководный порт и линии электропередач, которые негативно скажутся на состоянии территории, объявленной экологами и операторами экотуров резерватом для защиты «ледниковых» рек, естественных лесов, прибрежных вод и исчезающих видов. В связи с этим чилийские природоохранные органы пока затормозили реализацию проекта.

В случае с Исландией влияния местных и международных экологических организаций оказалось недостаточно для остановки строительства алюминиевого комплекса, хотя активисты продолжают лоббировать идею закрытия проекта на всех уровнях – государственных органов охраны природы, международных финансовых институтов и пр. В отношении Alumysaхорошо организованная внутри страны кампания с привлечением международных активистов, в том числе канадских, и контролирующих организаций создала существенные препятствия для Норанды (Noranda). Успех кампании был обеспечен, в частности, уровнем финансирования, имеющегося в распоряжении активистов, возможностью публикаций в канадских и международных СМИ, участием «звезд», а также воздействием на фирму со стороны ее родного правительства. Однако, в ситуации с Alcoaв Исландии не произвел должного эффекта даже тот факт, что в Совете директоров предприятия присутствовал эколог: опасный проект все же стал воплощаться в жизнь.

Гленн Свиткес, International River Network

Перевод А. Лебедева и М.Джонса

Группы: ИСАР - Сибирь

Информация для данного раздела подготовлена на основании данных АО «СО ЕЭС».

Энергосистема Российской Федерации состоит из ЕЭС России (семь объединенных энергосистем (ОЭС) – ОЭС Центра, Средней Волги, Урала, Северо-Запада, Юга и Сибири) и территориально изолированных энергосистем (Чукотский автономный округ, Камчатский край, Сахалинская и Магаданская область, Норильско-Таймырский и Николаевский энергорайоны, энергосистемы северной части Республики Саха (Якутия)).

Потребление электрической энергии

Фактическое потребление электроэнергии в Российской Федерации в 2018 г. составило 1076,2 млрд кВт∙ч (по ЕЭС России 1055,6 - млрд кВт∙ч), что выше факта 2017 г. на 1,6% (по ЕЭС России - на 1,5%).

В 2018 г. увеличение годового объема электропотребления ЕЭС России из‑за влияния температурного фактора (на фоне понижения среднегодовой температуры относительно прошлого года на 0,6°С) оценивается величиной около 5,0 млрд кВт-ч. Наиболее значительное влияние температуры на изменение динамики электропотребления наблюдалось в марте, октябре и декабре 2018 г.,
когда соответствующие отклонения среднемесячных температур достигали максимальных значений.

Кроме температурного фактора на положительную динамику изменения электропотребления в ЕЭС России в 2018 г. повлияло увеличение потребления электроэнергии промышленными предприятиями. В большей степени этот прирост обеспечен на металлургических предприятиях, предприятиях деревообрабатывающей промышленности, объектах нефте-газопроводного и железнодорожного транспорта.

В течение 2018 г. значительный рост потребления электроэнергии на крупных металлургических предприятиях, повлиявший на общую положительную динамику изменения объемов электропотребления в соответствующих территориальных энергосистемах, наблюдался:

  • в энергосистеме Вологодской области (прирост потребления 2,7% к 2017 г.) - увеличение потребления ПАО «Северсталь»;
  • в энергосистеме Липецкой области (прирост потребления 3,7% к 2017 г.) - увеличение потребления ПАО «НЛМК»;
  • в энергосистеме Оренбургской области (прирост потребления 2,5% к 2017 г.) - увеличение потребления АО «Уральская сталь»;
  • в энергосистеме Кемеровской области (прирост потребления 2,0% к 2017 г.) - увеличение потребления АО «Кузнецкие ферросплавы».

В составе крупных промышленных предприятий деревообрабатывающей промышленности, увеличивших в отчетном году потребление электроэнергии:

  • в энергосистеме Пермской области (прирост потребления 2,5% к 2017 г.) - увеличение потребления АО «Соликамскбумпром»;
  • в энергосистеме Республики Коми (прирост потребления 0,9% к 2017 г.) - увеличение потребления АО «Монди СЛПК».

Среди промышленных предприятий нефтепроводного транспорта, увеличивших в 2018 г. годовые объемы потребления электроэнергии:

  • в энергосистемах Астраханской области (прирост потребления (1,2% к 2017 г.) и Республики Калмыкия (прирост потребления 23,1% к 2017 г.) - увеличение потребления АО «КТК-Р» (Каспийский трубопроводный консорциум);
  • в энергосистемах Иркутской (прирост потребления 3,3% к 2017 г.), Томской (прирост потребления 2,4% к 2017 г.), Амурской областей (прирост потребления 1,5% к 2017 г.) и Южно-Якутского энергорайона энергосистемы Республики Саха (Якутия) (прирост потребления 14,9% к 2017 г.) - увеличение потребления магистральными нефтепроводами на территориях указанных субъектов Российской Федерации.

Увеличение объемов потребления электроэнергии предприятиями газотранспортной системы в 2018 г. отмечено на промышленных предприятиях:

  • в энергосистеме Нижегородской области (прирост потребления 0,4% к 2017 г.) - увеличение потребления ООО «Газпром трансгаз Нижний Новгород»;
  • в энергосистеме Самарской области (прирост потребления 2,3% к 2017 г.) - увеличение потребления ООО «Газпром трансгаз Самара»;
  • в энергосистемах Оренбургской (прирост потребления 2,5% к 2017 г.) и Челябинской областей (прирост потребления 0,8% к 2017 г.) - увеличение потребления ООО «Газпром трансгаз Екатеринбург»;
  • в энергосистеме Свердловской области (прирост потребления 1,4% к 2017 г.) - увеличение потребления ООО «Газпром трансгаз Югорск».

В 2018 г. наиболее значительное увеличение объемов железнодорожных перевозок и вместе с ним увеличение годовых объемов потребления электроэнергии предприятиями железнодорожного транспорта наблюдалось в ОЭС Сибири в энергосистемах Иркутской области, Забайкальского и Красноярского краев и Республики Тыва, а также в границах территорий энергосистем г. Москвы и Московской области и г. Санкт-Петербурга и Ленинградской области.

При оценке положительной динамики изменения объема потребления электроэнергии следует отметить рост в течение всего 2018 г. электропотребления на предприятии АО «СУАЛ» филиал «Волгоградский алюминиевый завод».

В 2018 г. с увеличением объема производства электроэнергии на тепловых и атомных электростанциях наблюдалось увеличение расхода электроэнергии на собственные, производственные и хозяйственные нужды электростанций. Для АЭС это проявилось в значительной мере с вводом в 2018 г. новых энергоблоков №5 на Ленинградской АЭС и №4 на Ростовской АЭС.

Производство электрической энергии

В 2018 г. выработка электроэнергии электростанциями России, включая производство электроэнергии на электростанциях промышленных предприятий, составила 1091,7 млрд кВт∙ч (по ЕЭС России - 1070,9 млрд кВт∙ч) (табл. 1, табл. 2).

Увеличение к объему производства электроэнергии в 2018 г. составило 1,7%, в том числе:

  • ТЭС - 630,7 млрд кВт∙ч (падение на 1,3%);
  • ГЭС - 193,7 млрд кВт∙ч (увеличение на 3,3%);
  • АЭС - 204,3 млрд кВт∙ч (увеличение на 0,7%);
  • электростанции промышленных предприятий - 62,0 млрд кВт∙ч (увеличение на 2,9%).
  • СЭС - 0,8 млрд кВт∙ч (увеличение на 35,7%).
  • ВЭС - 0,2 млрд кВт∙ч (увеличение на 69,2%).

Табл. 1 Баланс электрической энергии за 2018 г., млрд кВтч

Изменение, % к 2017

Выработка электроэнергии, всего

Электростанции промышленных предприятий

Потребление электроэнергии

Сальдо перетоков электроэнергии, «+» - прием, «-» - выдача

Табл. 2 Производство электроэнергии в России по ОЭС и энергозонам в 2018 г., млрд кВтч

Изменение, % к 2017

Энергозона Европейской части и Урала, в т.ч.: числе:

ОЭС Центра

ОЭС Северо-Запада

ОЭС Средней Волги

ОЭС Урала

Энергозона Сибири, в т.ч.:

ОЭС Сибири

Энергозона Востока, в т.ч.:

ОЭС Востока

Изолированные энергорайоны

Итого по России

* - Норильско-Таймырский энергетический комплекс

Структура и показатели использования установленной мощности

Число часов использования установленной мощности электростанций в целом по ЕЭС России в 2018 г. составило 4411 часов или 50,4% календарного времени (коэффициент использования установленной мощности) (табл. 3, табл. 4).

В 2018 г. число часов и коэффициент использования установленной мощности (доля календарного времени) по типам генерации следующие:

  • ТЭС - около 4 075 часов (46,5% календарного времени);
  • АЭС - 6 869 часов (78,4% календарного времени);
  • ГЭС - 3 791 часов (43,3% календарного времени);
  • ВЭС - 1 602 часов (18,3% календарного времени);
  • СЭС - 1 283 часов (14,6% календарного времени).

По сравнению с 2017 г. использование установленной мощности на ТЭС и ГЭС увеличилось на 20 и 84 часа соответственно, снизилось на СЭС на 2 часа.

Существенно, на 409 часов снизилось использование установленной мощности АЭС, а использование установленной мощности ВЭС наоборот увеличилось на 304 часа.

Табл. 3 Структура установленной мощности электростанций объединенных энергосистем и ЕЭС России на 01.01.2019

Всего, МВт

В ЭС

ЕЭС РОССИИ

243 243,2

ОЭС Центра

52 447,3

ОЭС Средней Волги

27 591,8

ОЭС Урала

53 614,3

ОЭС Северо-Запада

24 551,8

23 535,9

ОЭС Сибири

51 861,1

ОЭС Востока

Табл. 4 Коэффициенты использования установленной мощности электростанций по ЕЭС России и отдельным ОЭС в 2017 и 2018 годах, %

В ЭС

В ЭС

ЕЭС России

ОЭС Центра

ОЭС Средней Волги

ОЭС Урала

ОЭС Северо- Запада

ОЭС Сибири

ОЭС Востока

Табл. 5 Изменение показателей установленной мощности электростанций объединенных энергосистем, в том числе ЕЭС России в 2018 году

01.01.2018, МВт

Ввод

Вывод из эксплуатации (демонтаж, длительная консервация)

Перемаркировка

Прочие изменения (уточнение и др.)

На 01.01.2019, МВт

РОССИЯ

246 867,6

250 442,0

ЕЭС РОССИИ

239 812,2

243 243,2

ОЭС Центра

53 077,1

52 447,3

ОЭС Средней Волги

27 203,8

27 591,8

ОЭС Урала

52 714,9

53 614,3

ОЭС Северо-Запада

23 865,2

24 551,8

21 538,5

23 535,9

ОЭС Сибири

51 911,2

51 861,1

ОЭС Востока

Технологически изолированные территориальные энергосистемы:

Минэнерго предлагает ввести принцип «бери или плати» для потребителей электроэнергии, которые используют меньше заявленной мощности

Минэнерго придумало механизм загрузки мощностей, которые находятся в резерве у потребителей, но не используются. Предложения содержатся в проекте постановления правительства, опубликованном в пятницу. Документ уже разослан на межведомственное согласование, замечаний к нему пока нет, говорит представитель Минэнерго.

Сейчас потребители платят только за фактически используемую мощность, и стимулов сокращать резерв у них нет. Тем временем сети вынуждены строить новые подстанции, что становится все труднее в условиях замораживания тарифов. А часть мощностей, которые не используются, все равно приходится обслуживать, и плата за это ложится в тариф для всех потребителей.

Теперь согласно проекту постановления за неиспользуемые мощности придется платить крупным потребителям (мощностью от 670 кВт), в 70 регионах страны они держат в резерве в среднем 58% максимальной мощности подстанций, говорится в материалах Минэнерго. Крупные потребители смогут бесплатно пользоваться резервом, только если в течение года он не превышал 40% максимальной мощности. Если же объем больше, потребителю придется оплатить 20% резервируемой мощности . Для потребителей первой и второй категорий надежности (для них краткосрочный перерыв в электроснабжении может быть опасным для жизни людей или привести к значительным материальным потерям) «бесплатный» резерв увеличен до 60% максимальной мощности. При этом сумма, заплаченная потребителем, не закладывается в необходимую валовую выручку сетевой компании на следующий год, это приведет к снижению тарифа на передачу для остальных потребителей.

Экономический эффект Минэнерго подсчитало на примере Белгородской, Курской и Липецкой областей. В среднем по трем регионам больше 40% мощности не используют 73% потребителей, говорится в презентации министерства (есть у «Ведомостей»). В каждом из регионов им придется дополнительно заплатить в среднем 339 000 руб. (если бы изменения действовали в 2013 г.), а необходимая валовая выручка сетевых компаний снизится в среднем на 3,5%. Как изменятся при этом их доходы — в презентации Минэнерго не говорится .

В случае введения платы за резерв цена на передачу энергии для крупных потребителей вырастет примерно на 5% (+10 коп./кВт ч,), подсчитала аналитик Газпромбанка Наталья Порохова . При этом, по ее словам, ставка платы за резерв в 20% не оттолкнет потребителей от дальнейшего строительства собственной генерации, хотя и увеличит сроки окупаемости таких проектов еще на один год . «Сейчас крупные потребители массово уходят с рынка, предпочитая строить собственные станции. Таким образом они экономят на дорогом тарифе на передачу энергии, но не отсоединяются от сетей, сохраняя на крайний случай резерв», — напоминает аналитик. По ее словам, оплата 40-50% неиспользуемой мощности значительно ухудшила бы экономику строительства собственной генерации, а оплата 100% резерва лишало бы ее смысла . В рамках предложений Минэнерго стоимость собственных электростанций вырастет для потребителей всего на 20 коп./кВт ч, подсчитала Порохова.

Представитель «Россетей» не стал уточнять, согласна ли компания с предложенным проектом. «Документ вывешен на общественное обсуждение, и пока мы направляем Минэнерго замечания и предложения», — говорит он. Но, согласно презентации «Россетей» (есть у «Ведомостей»), компания предлагала в течение пяти лет увеличить долю оплачиваемого резерва до 100%, а также постепенно ввести плату и для других категорий потребителей.

Председатель набсовета НП «Сообщество потребителей энергии» и вице-президент НЛМК по энергетике Александр Старченко не верит в благие намерения «Россетей». «Если холдинг и несет какие-то дополнительные расходы на обслуживание недозагруженных подстанций, то они минимальны, так что плата за резерв приведет только к росту доходов сетевой компании» , — говорит Старченко. По его мнению, вводить экономические стимулы для высвобождения«запертых» мощностей необходимо только в отдельных регионах, где потребители действительно «стоят в очереди» на техприсоединение.

Выбор редакции
Документы органов местного самоуправления с применением таблиц СНиП, ВНТП-Н-97 и учётом постановлений определяют, какой норматив...

Дарина Катаева Уже первые мысли о прохождении теста на «детекторе лжи» или полиграфе вызывают у людей неприятные чувства, мысли и...

«Друзья – не разлей вода», так говорят в народе. В век, когда близкие и родные люди, друзья детства становятся главными для нас врагами,...

Неравномерность реализации и транспорта газа определяется в значительной части режимом потребления газа . Потребители используют газ на...
Часть первая. Тепловая электроэнергетика Статья опубликована при поддержке компании, помогающей в оформлении различных документов....
Вопрос: Как перейти на оплату электроэнергии по зонам суток (физическое лицо)? Ответ:Для перехода на расчет по тарифу,...
Описание Отраслевое решение «1С:Бухгалтерия некредитной финансовой организации КОРП» позволяет вести бухгалтерский и налоговый учет...
Все выплаты производите не из членских взносов (членские принадлежность юр.лица) а из целевых. Если затраты связаны с содержанием...
Бухгалтера знают, что начисление заработной платы - сложная и ответственная операция. Ее нужно делать, строго следуя трудовому и...