Кислотность среды. Понятие о pH раствора. Водородный показатель кислотности (рН) Аналитический объёмный метод


Водородный показатель – рН – это мера активности (в случае разбавленных растворов отражает концентрацию) ионов водорода в растворе, количественно выражающая его кислотность, вычисляется как отрицательный (взятый с обратным знаком) десятичный логарифм активности водородных ионов, выраженной в молях на литр.

pН = – lg

Это понятие было введено в 1909 году датским химиком Сёренсеном. Показатель называется pH, по первым буквам латинских слов potentia hydrogeni – сила водорода, или pondus hydrogenii – вес водорода.

Несколько меньшее распространение получила обратная pH величина – показатель основности раствора, pOH, равная отрицательному десятичному логарифму концентрации в растворе ионов OH:

рОН = – lg

В чистой воде при 25°C концентрации ионов водорода () и гидроксид-ионов () одинаковы и составляют 10 -7 моль/л, это напрямую следует из константы автопротолиза воды К w , которую иначе называют ионным произведением воды:

К w = · =10 –14 [моль 2 /л 2 ] (при 25°C)

рН + рОН = 14

Когда концентрации обоих видов ионов в растворе одинаковы, говорят, что раствор имеет нейтральную реакцию. При добавлении к воде кислоты концентрация ионов водорода увеличивается, а концентрация гидроксид-ионов соответственно уменьшается, при добавлении основания – наоборот, повышается содержание гидроксид-ионов, а концентрация ионов водорода падает. Когда > говорят, что раствор является кислым, а при > – щелочным.

Определение рН

Для определения значения pH растворов широко используют несколько способов.

1) Водородный показатель можно приблизительно оценивать с помощью индикаторов, точно измерять pH-метром или определять аналитически путём, проведением кислотно-основного титрования.

Для грубой оценки концентрации водородных ионов широко используются кислотно-основные индикаторы – органические вещества-красители, цвет которых зависит от pH среды. К наиболее известным индикаторам принадлежат лакмус, фенолфталеин, метиловый оранжевый (метилоранж) и другие. Индикаторы способны существовать в двух по-разному окрашенных формах – либо в кислотной, либо в основной. Изменение цвета каждого индикатора происходит в своём интервале кислотности, обычно составляющем 1-2 единицы (см. Таблица 1, занятие 2).

Для расширения рабочего интервала измерения pH используют так называемый универсальный индикатор, представляющий собой смесь из нескольких индикаторов. Универсальный индикатор последовательно меняет цвет с красного через жёлтый, зелёный, синий до фиолетового при переходе из кислой области в щелочную. Определения pH индикаторным методом затруднено для мутных или окрашенных растворов.


2) Аналитический объёмный метод – кислотно-основное титрование – также даёт точные результаты определения общей кислотности растворов. Раствор известной концентрации (титрант) по каплям добавляется к исследуемому раствору. При их смешивании протекает химическая реакции. Точка эквивалентности – момент, когда титранта точно хватает, чтобы полностью завершить реакцию, – фиксируется с помощью индикатора. Далее, зная концентрацию и объём добавленного раствора титранта, вычисляется общая кислотность раствора.

Кислотность среды имеет важное значение для множества химических процессов, и возможность протекания или результат той или иной реакции часто зависит от pH среды. Для поддержания определённого значения pH в реакционной системе при проведении лабораторных исследований или на производстве применяют буферные растворы, которые позволяют сохранять практически постоянное значение pH при разбавлении или при добавлении в раствор небольших количеств кислоты или щёлочи.

Водородный показатель pH широко используется для характеристики кислотно-основных свойств различных биологических сред (Табл. 2).

Кислотность реакционной среды особое значение имеет для биохимических реакций, протекающих в живых системах. Концентрация в растворе ионов водорода часто оказывает влияние на физико-химические свойства и биологическую активность белков и нуклеиновых кислот, поэтому для нормального функционирования организма поддержание кислотно-основного гомеостаза является задачей исключительной важности. Динамическое поддержание оптимального pH биологических жидкостей достигается благодаря действию буферных систем.

3) Использование специального прибора – pH-метра – позволяет измерять pH в более широком диапазоне и более точно (до 0,01 единицы pH), чем с помощью индикаторов, отличается удобством и высокой точностью, позволяет измерять pH непрозрачных и цветных растворов и потому широко используется.

С помощью рН-метра измеряют концентрацию ионов водорода (pH) в растворах, питьевой воде, пищевой продукции и сырье, объектах окружающей среды и производственных систем непрерывного контроля технологических процессов, в т. ч. в агрессивных средах.

рН-метр незаменим для аппаратного мониторинга pH растворов разделения урана и плутония, когда требования к корректности показаний аппаратуры без её калибровки чрезвычайно высоки.

Прибор может использоваться в лабораториях стационарных и передвижных, в том числе полевых, а также клинико-диагностических, судебно-медицинских, научно-исследовательских, производственных, в том числе мясо-молочной и хлебопекарной промышленности.

Последнее время pH-метры также широко используются в аквариумных хозяйствах, контроля качества воды в бытовых условиях, земледелия (особенно в гидропонике), а также – для контроля диагностики состояния здоровья.

Таблица 2. Значения рН для некоторых биологических систем и других растворов

Вода является слабым электролитом; она слабо диссоциирует по уравнению

При 25 °С в 1 л воды распадается на ионы 10-7 моль H2O. Концентрация ионов H+ и OH- (в моль/л) будет равна

Чистая вода имеет нейтральную реакцию. При добавлении в нее кислоты концентрация ионов H+ увеличивается, т.е. > 10-7 моль/л; концентрация ионов OH- уменьшается, т.е. меньше 10-7 моль/л. При добавлении щелочи концентрация ионов OH- увеличивается: > 10-7 моль/л, следовательно, меньше 10-7 моль/л.

На практике для выражения кислотности или щелочности раствора вместо концентрации используют ее отрицательный десятичный логарифм, который называют водородным показателем pH:

В нейтральной воде pH = 7. Значения pH и соответствующие им концентрации ионов H+ и OH- приведены в табл. 4.

Буферные растворы

Многие аналитические реакции проводят при строго определенном значении pH, которое должно сохраниться в течение всего времени проведения реакции. В ходе некоторых реакций pH может изменяться в результате связывания или высвобождения ионов H+. Для сохранения постоянного значения pH применяют буферные растворы.

Буферные растворы представляют собой чаще всего смеси слабых кислот с солями этих кислот или смеси слабых оснований с солями этих же оснований. Если, например, в ацетатный буферный раствор, состоящий из уксусной кислоты CH3COOH и ацетата натрия CH3COONa добавить некоторое количество такой сильной кислоты, как HCl, она будет реагировать с ацетат-ионами с образованием малодиссоциирующей CH3COOH:

Таким образом, добавленные в раствор ионы H+ не останутся свободными, а будут связаны ионами CH3COO-, и поэтому pH раствора почти не изменится. При добавлении раствора щелочи к ацетатному буферному раствору ионы OH- будут связаны недиссоциированными молекулами уксусной кислоты CH3COOH:

Следовательно, pH раствора и в этом случае также почти не изменится.

Буферные растворы сохраняют свое буферное действие до определенного предела, т.е. они обладают определенной буферной емкостью. Если ионов H+ или OH- оказалось в растворе больше, чем позволяет буферная емкость раствора, то pH будет изменяться в значительной степени, как и в небуферном растворе.

Обычно в методиках анализа указывается, каким именно буферным раствором следует пользоваться при выполнении данного анализа и как его следует приготовить. Буферные смеси с точным значением pH выпускают в виде в ампулах для приготовления 500 мл раствора.

pH = 1,00. Состав: 0,084 г гликокола (аминоуксусной кислоты NH2CH2COOH), 0,066 г хлорида натрия NaCl и 2,228 г соляной кислоты HCl.

pH = 2,00. Состав: 3,215 г лимонной кислоты C6H8O7-H2O, 1,224 г гидроксида натрия NaOH и 1,265 г соляной кислоты HCl.

pH = 3,00. Состав: 4,235 г лимонной кислоты C6H8O7-H2O, 1,612 г гидроксида натрия NaOH и 1,088 г соляной кислоты HCl.

pH = 4,00. Состав: 5,884 г лимонной кислоты C6H8O7-H2O, 2,240 г гидроксида натрия NaOH и 0,802 г соляной кислоты HCl.

pH = 5,00. Состав: 10,128 г лимонной кислоты C6H8O7-H2O и 3,920 г гидроксида натрия NaOH.

pH = 6,00. Состав: 6,263 г лимонной кислоты C6H8O7-H2O и 3,160 г гидроксида натрия NaOH.

pH = 7,00. Состав: 1,761 г дигидрофосфата калия KH2PO4 и 3,6325 г гидрофосфата натрия Na2HPO4-2H2O.

pH = 8,00. Состав: 3,464 г борной кислоты H3BO3, 1,117 г гидроксида натрия NaOH и 0,805 г соляной кислоты HCl.

pH = 9,00. Состав: 1,546 г борной кислоты H3BO3, 1,864 г хлорида калия, KCl и 0,426 г гидроксида натрия NaOH.

pH = 10,00. Состав: 1,546 г борной кислоты H3BO3, 1,864 г хлорида калия KCl и 0,878 г гидроксида натрия NaOH.

pH = 11,00. Состав: 2,225 г гидрофосфата натрия Na2HPO4-2H2O и 0,068 г гидроксида натрия NaOH.

pH = 12,00. Состав: 2,225 г гидрофосфата натрия Na2HPO4-2H2O и 0,446 г гидроксида натрия NaOH.

pH = 13,00. Состав: 1,864 г хлорида калия KCl и 0,942 г гидроксида натрия NaOH.

Отклонения от номинального значения pH достигают ±0,02 для растворов при pH от 1 до 10 и ±0,05 при pH от 11 до 13. Такая точность вполне достаточна для практических работ.

Для настройки pH-метров применяют стандартные буферные растворы с точными значениями pH.

1. Ацетатный буферный раствор с pH=4,62: 6,005 г уксусной кислоты CH3COOH и 8,204 г ацетата натрия CH3COONa в 1 л раствора.

2. Фосфатный буферный раствор с pH=6,88: 4,450 г гидрофосфата натрия Na2HPO4-2H2O и 3,400 г дигидрофосфата калия KH2PO4 в 1 л раствора.

3. Боратный буферный раствор с pH=9,22: 3,81 г тетрабората натрия Na2B4O7-10H2O в 1 л раствора.

4. Фосфатный буферный раствор с pH=11,00: 4,450 г гидрофосфата натрия Na2HPO4-2H2O и 0,136 г гидроксида натрия NaOH в 1 л раствора.

Для приготовления буферных растворов для агрохимического и биохимического анализа со значениями pH от 1,1 до 12,9 с интервалом в 0,1 применяют 7 основных исходных растворов.

Раствор 1. Растворяют 11,866 г гидрофосфата натрия Na2HPO4-2H2O в воде и разбавляют в мерной колбе водой до 1 л (концентрация раствора 1/15 М).

Раствор 2. Растворяют 9,073 дигидрофосфата калия KH2PO4 в 1 л воды в мерной колбе (концентрация 1/15 М).

Раствор 3. Растворяют 7,507 г гликокола (аминоуксусной кислоты) NH2CH2COOH и 5,84 г хлорида натрия NaCl в 1 л воды в мерной колбе. Из этого раствора путем смешивания с 0,1 н. раствором HCl готовят буферные растворы с pH от 1,1 до 3,5; смешиванием с 0,1 н. раствором NaOH готовят растворы с pH от 8,6 до 12,9.

Раствор 4. Растворяют 21,014 г лимонной кислоты C6H8O7-H2O в воде, добавляют к раствору 200 мл 1 н. раствора NaOH и разбавляют до 1 л водой в мерной колбе. Смешиванием этого раствора с 0,1 н. раствором HCl готовят буферные растворы с pH от 1,1 до 4,9; смешиванием с 0,1 н. раствором NaOH готовят буферные растворы с pH от 5,0 до 6,6.

Раствор 5. Растворяют 12,367 г борной кислоты H3BO3 в воде, добавляют 100 мл 1 н. раствора NaOH и разбавляют водой до 1 л в мерной колбе. Смешиванием этого раствора с 0,1 н. раствором HCl готовят буферные растворы с pH от 7,8 до 8,9; смешиванием с 0,1 н. раствором NaOH готовят буферные растворы с рН от 9,3 до 11,0.

Раствор 6. Готовят точно 0,1 н. раствор HCl;

Раствор 7. Готовят точно 0,1 н. раствор NaOH; дистиллированную воду для приготовления раствора кипятят 2 ч для удаления CO2. Раствор при хранении защищают от попадания CO2 из воздуха хлоркальциевой трубкой.

В некоторых растворах при хранении образуется налет плесени, для предотвращения этого к раствору прибавляют несколько капель тимола в качестве консервирующего средства. Для приготовления буферного раствора требуемого pH смешивают указанные растворы в определенном соотношении (табл. 5). Объем измеряют с помощью бюретки вместимостью 100,0 мл. Все значения pH буферных растворов в таблице приведены к температуре 20 °С.

Для приготовления исходных растворов используют реактивы квалификации хч. Гидрофосфат натрия Na2HPO4-2H2O предварительно дважды перекристаллизовывают. При второй перекристаллизации температура раствора не должна превышать 90 °С. Полученный препарат слегка увлажняют и высушивают в термостате при 36 °С в течение двух суток. Дигидрофосфат калия KH2PO4 также дважды перекристаллизовывают и высушивают при 110-120 °С. Хлорид натрия NaCl дважды перекристаллизовывают и сушат при 120 °С. Лимонную кислоту C6H8O7-H2O дважды перекристаллизовывают. При второй перекристаллизации температура раствора не должна быть выше 60 °С. Борную кислоту H3BO3 дважды перекристаллизовывают из кипящей воды и высушивают при температуре не выше 80 °С.

На значение pH оказывает влияние температура буферного раствора. В табл. 6 приведены отклонения pH в зависимости от температуры стандартных буферных растворов.

Для создания заданного pH в анализируемом растворе при комплексометрических титрованиях применяют буферные растворы следующего состава.

pH = 1. Соляная кислота, 0,1 н. раствор.

pH = 2. Смесь гликокола NH2-CH2-COOH и его солянокислой соли NH2-CH2-COOH-HCl. Твердый гликокол (0,2-0,3 г) прибавляют к 100 мл солянокислого раствора соли.

pH = 4-6,5. Ацетатная смесь 1 н. раствора ацетата натрия и 1 н. раствора уксусной кислоты. Растворы смешивают перед применением в равных объемах.

pH = 5. Смесь раствора 27,22 г кристаллического ацетата натрия и 60 мл 1 н. раствора HCl разбавляют до 1 л водой.

pH = 5,5. Ацетатная смесь. Растворяют 540 г ацетата натрия в воде и разбавляют до 1 л. К полученному раствору добавляют 500 мл 1 н. раствора уксусной кислоты.

pH = 6,5-8. Триэтаноламин и его солянокислая соль. Смешивают 1 М раствор триэтаноламина N(C2H4OH)3 и 1 М раствор HCl в равных объемах перед применением.

pH = 8,5-9,0. Аммиачно-ацетатная смесь. К 500 мл концентрированного аммиака добавляют 300 мл ледяной уксусной кислоты и разбавляют водой до 1 л.

pH = 9. Боратная смесь. Смешивают 100 мл 0,3 М раствора борной кислоты с 45 мл 0,5 н. раствора едкого натра.

pH = 8-11. Аммиак - хлорид аммония. Смешивают 1 н. раствор NH4OH и 1 н. раствор NH4Cl в равных объемах перед применением.

pH = 10. К 570 мл концентрированного раствора аммиака прибавляют 70 г хлорида аммония и разбавляют водой до 1 л.

рН = 11-13. Едкий натр, 0,1 н. раствор.

При комплексометрическом определении общей жесткости воды применяют буферные таблетки серо-бурого цвета, приготовленные совместно с индикатором (эриохром черный Т). К пробе воды (100 мл) достаточно добавить несколько капель раствора сульфида натрия (для маскировки тяжелых металлов), две буферные таблетки и 1 мл концентрированного аммиака. После растворения таблеток раствор окрашивается в красный цвет; его оттитровывают 0,02 М раствором ЭДТА до устойчивого зеленого окрашивания. 1 мл 0,02 М раствора ЭДТА соответствует 0,02 экв/л жесткости воды. Выпускаются в ГДР.

Измерение pH

Для определения pH растворов применяют специальные реактивы - индикаторы, а также приборы - pH-метры (электрометрическое определение pH).

Индикаторное определение pH. Чаще всего в аналитической практике pH растворов определяют приближенно с помощью реактивной индикаторной бумаги (в интервале 0,5-2,0 единицы pH). С помощью индикаторной универсальной бумаги можно определить pH более точно (в интервале 0,2-0,3 единицы pH). В табл. 7 и 8 приведены данные о реактивных и универсальных индикаторных бумагах.

Переход окраски универсальной индикаторной бумаги приведен в табл. 8 и 9. Полученные промежуточные цвета сопоставляют с прилагаемой шкалой сравнения и по ней находят значения pH испытуемого раствора. Индикаторные бумаги можно использовать для определения pH водных растворов с невысокой концентрацией солей и в отсутствие сильных окислителей. Определив pH с помощью универсальной индикаторной бумаги с интервалом pH = 1,0-11,0 или 0-12, уточняют полученный результат с помощью бумаги «Рифан» с более узким интервалом pH.

Электрометрическое измерение pH. Этот метод удобен для измерения pH цветных растворов, в которых практически невозможно. Для измерений используют приборы - pH-метры со стеклянным электродом, которым обычно заменяют водородный электрод. Очень редко для этой цели применяют сурьмяный или хингидронный электрод.

Стеклянные электроды применяют для определения pH растворов, содержащих тяжелые металлы, окислители и восстановители, а также коллоидных растворов и эмульсий. Определение pH со стеклянным электродом основано на изменении э.д.с. элемента, обратимого относительно ионов водорода.

Потенциал поверхности стекла, соприкасающегося с раствором кислоты, зависит от pH раствора. Это свойство стекла использовано в стеклянных электродах - индикаторах pH. Стеклянный электрод обычно имеет форму пробирки, донная часть которой выполнена в виде тонкостенной стеклянной пластинки или в виде шарика с толщиной стенок не более 0,01 мм. В стеклянный электрод наливают буферный раствор с известным pH и помещают в исследуемый раствор.

В качестве электрода сравнения используют каломельный электрод. Этот электрод представляет собой сосуд, на дне которого находится ртуть, соединенная с цепью платиновой проволокой. Над ртутью находится каломельная паста с кристаллами KCl, сверху насыщенные растворы KCl и каломели (Hg2Cl2). Контакт электрода с исследуемым раствором происходит через тонкое асбестовое волокно. Каломельный электрод сравнения можно применять для измерений pH при температуре не выше 60 °С; нельзя измерять pH растворов, содержащих фториды.

Прибор pH-метр проверяют и настраивают всегда по тому буферному раствору, pH которого близок к pH исследуемого раствора. Например, для измерения pH в области от 2 до 6 готовят буферный раствор по Зеренсену с pH = 3 или 4 или применяют стандартный буферный раствор с pH = 4,62.

В лабораторной практике для измерения pH применяют pH-метр ЛПУ-01, который предназначен для определения pH растворов в пределах от -2 до 14 с диапазоном через 4 единицы pH: -2-2; 2-4; 6-10; 10-14. Чувствительность прибора - 0,01 pH. Используют также pH-метр лабораторный специальный ЛПС-02; pH-метр типа ПЛ-У1 и переносной pH-метр-милливольтметр ППМ-03М1.

Промышленным преобразователем повышенной точности является pH-метр типа pH-261, который предназначается для измерений pH растворов и пульп. В полевых условиях для измерений pH водных растворов применяют pH-метр pH-47М; для измерений pH солевых почвенных вытяжек - pH-метр ПЛП-64; для молока и молочных продуктов применяют pH-метр pH-222-2. Работа на pH-метрах осуществляется согласно инструкции, прилагаемой к каждому прибору.

ВОДОРОДНЫЙ ПОКАЗАТЕЛЬ (РН). Одно из важнейших свойств водных растворов – их кислотность (или щелочность), которая определяется концентрацией ионов Н + и ОН – (см . ЭЛЕКТРОЛИТИЧЕСКАЯ ДИССОЦИАЦИЯ. ЭЛЕКТРОЛИТЫ). Концентрации этих ионов в водных растворах связаны простой зависимостью = К w ; (квадратными скобками принято обозначать концентрацию в единицах моль/л). Величина Kw называется ионным произведением воды и при данной температуре постоянна. Так, при 0 о С она равна 0,11Ч 10 –14 , при 20 о С – 0,69Ч 10 –14 , а при 100 о С – 55,0Ч 10 –14 . Чаще всего пользуются значением K w при 25 о С, которое равно 1,00Ч 10 –14 . В абсолютно чистой воде, не содержащей даже растворенных газов, концентрации ионов Н + и ОН – равны (раствор нейтрален). В других случаях эти концентрации не совпадают: в кислых растворах преобладают ионы Н + , в щелочных – ионы ОН – . Но их произведение в любых водных растворах постоянно. Поэтому если увеличить концентрацию одного из этих ионов, то концентрация другого иона уменьшится во столько же раз. Так, в слабом растворе кислоты, в котором = 10 –5 моль/л, = 10 –9 моль/л, а их произведение по-прежнему равно 10 –14 . Аналогично в щелочном растворе при = 3,7Ч 10 –3 моль/л = 10 –14 /3,7Ч 10 –3 = 2,7Ч 10 –11 моль/л.

Из сказанного следует, что можно однозначно выразить кислотность раствора, указав концентрацию в нем только ионов водорода. Например, в чистой воде = 10 –7 моль/л. На практике оперировать такими числами неудобно. Кроме того, концентрации ионов Н + в растворах могут отличаться в сотни триллионов раз – примерно от 10 –15 моль/л (крепкие растворы щелочей) до 10 моль/л (концентрированная соляная кислота), что невозможно изобразить ни на каком графике. Поэтому давно договорились для концентрации ионов водорода в растворе указывать только показатель степени 10, взятый с обратным знаком; для этого концентрацию следует выразить в виде степени 10х, без множителя, например, 3,7Ч 10 –3 = 10 –2,43 . (При более точных расчетах, особенно в концентрированных растворах, вместо концентрации ионов используют их активности.) Этот показатель степени получил название водородного показателя, а сокращенно рН – от обозначения водорода и немецкого слова Potenz – математическая степень. Таким образом, по определению, рН = –lg[Н + ]; эта величина может изменяться в небольших пределах – всего от –1 до 15 (а чаще – от 0 до 14). При этом изменению концентрации ионов Н + в 10 раз соответствует изменение рН на одну единицу. Обозначение рН ввел в научный обиход в 1909 датский физикохимик и биохимик С.П.Л.Сёренсен, который занимался в то время изучением процессов, происходящих при сбраживании пивного солода, и их зависимостью от кислотности среды.

При комнатной температуре в нейтральных растворах рН = 7, в кислых растворах рН < 7, а в щелочных рН > 7. Приблизительно значение рН водного раствора можно определить с помощью индикаторов. Например, метиловый оранжевый при рН < 3,1 имеет красный цвет, а при рН > 4,4 – желтый; лакмус при рН < 6,1 красный, а при рН > 8 – синий и т.д. Более точно (до сотых долей) значение рН можно определить с помощью специальных приборов – рН-метров. Такие приборы измеряют электрический потенциал специального электрода, погруженного в раствор; этот потенциал зависит от концентрации ионов водорода в растворе, и его можно измерить с высокой точностью.

Интересно сравнить значения рН растворов различных кислот, оснований, солей (при концентрации 0,1 моль/л), а также некоторых смесей и природных объектов. Для малорастворимых соединений, отмеченных звездочкой, приведены рН насыщенных растворов.

Таблица 1. Водородные показатели для растворов

Раствор РН
HCl 1,0
H 2 SO 4 1,2
H 2 C 2 O 4 1,3
NaHSO 4 1,4
Н 3 РО 4 1,5
Желудочный сок 1,6
Винная кислота 2,0
Лимонная кислота 2,1
HNO 2 2,2
Лимонный сок 2,3
Молочная кислота 2,4
Салициловая кислота 2,4
Столовый уксус 3,0
Сок грейпфрута 3,2
СО 2 3,7
Яблочный сок 3,8
H 2 S 4,1
Моча 4,8–7,5
Черный кофе 5,0
Слюна 7,4–8
Молоко 6,7
Кровь 7,35–7,45
Желчь 7,8–8,6
Вода океанов 7,9–8,4
Fe(OH) 2 9,5
MgO 10,0
Mg(OH) 2 10,5
Na 2 CO 3 11
Ca(OH) 2 11,5
NaOH 13,0

Таблица позволяет сделать ряд интересных наблюдений. Значения рН, например, сразу показывают сравнительную силу кислот и оснований. Хорошо видно также сильное изменение нейтральной среды в результате гидролиза солей, образованных слабыми кислотами и основаниями, а также при диссоциации кислых солей.

Природная вода всегда имеет кислую реакцию (рН < 7) из-за того, что в ней растворен углекислый газ; при его реакции с водой образуется кислота: СО 2 + Н 2 О « Н + + НСО 3 2– . Если насытить воду углекислым газом при атмосферном давлении, рН полученной «газировки» будет равен 3,7; такую кислотность имеет примерно 0,0007%-ный раствор соляной кислоты – желудочный сок намного кислее! Но даже если повысить давление CO 2 над раствором до 20 атм, значение pH не опускается ниже 3,3. Это значит, что газированную воду (в умеренных количествах, конечно) можно пить без вреда для здоровья, даже если она насыщена углекислым газом.

Определенные значения рН имеют исключительно большое значение для жизнедеятельности живых организмов. Биохимические процессы в них должны протекать при строго заданной кислотности. Биологические катализаторы – ферменты способны работать только в определенных пределах рН, а при выходе за эти пределы их активность может резко снижаться. Например, активность фермента пепсина, который катализирует гидролиз белков и способствует таким образом перевариванию белковой пищи в желудке, максимальна при значениях рН около 2. Поэтому для нормального пищеварения необходимо, чтобы желудочный сок имел довольно низкие значения рН: в норме 1,53–1,67. При язвенной болезни желудка рН понижается в среднем до 1,48, а при язве двенадцатиперстной кишки может доходить даже до 105. Точное значение рН желудочного сока определяют путем внутрижелудочного исследования (рН-зонд). Если у человека понижена кислотность, врач может назначить прием с пищей слабого раствора соляной кислоты, а при повышенной кислотности – принимать противокислотные средства, например, гидроксиды магния или алюминия. Интересно, что если выпить лимонный сок, кислотность желудочного сока... понизится! Действительно, раствор лимонной кислоты лишь разбавит более сильную соляную кислоту, содержащуюся в желудочном соке.

В клетках организма рН имеет значение около 7, во внеклеточной жидкости – 7,4. Нервные окончания, которые находятся вне клеток, очень чувствительны к изменению рН. При механических или термических повреждениях тканей стенки клеток разрушаются и их содержимое попадает на нервные окончания. В результате человек чувствует боль. Скандинавский исследователь Олаф Линдал проделал такой эксперимент: с помощью специального безыгольного инъектора человеку впрыскивали сквозь кожу очень тонкую струйку раствора, которая не повреждала клетки, но действовала на нервные окончания. Было показано, что боль вызывают именно катионы водорода, причем с уменьшением рН раствора боль усиливается. Аналогично непосредственно «действует на нервы» и раствор муравьиной кислоты, который жалящие насекомые или крапива впрыскивают под кожу. Разным значением рН тканей объясняется также, почему при некоторых воспалениях человек чувствует боль, а при некоторых – нет.

Интересно, что впрыскивание под кожу чистой воды дало особенно сильную боль. Объясняется это странное на первый взгляд явление так: клетки при контакте с чистой водой в результате осмотического давления разрываются и их содержимое воздействует на нервные окончания.

В очень узких пределах должно оставаться значение рН крови; даже небольшое ее подкисление (ацидоз) или защелачивание (алкалоз) может привести к гибели организма. Ацидоз наблюдается при таких заболеваниях как бронхит, недостаточность кровообращения, опухоли легких, пневмония, диабет, лихорадка, поражения почек и кишечника. Алколоз же наблюдается при гипервентиляции легких (или при вдыхании чистого кислорода), при анемии, отравлении СО, истерии, опухоли мозга, избыточном потреблении питьевой соды или щелочных минеральных вод, приеме диуретических лекарств. Интересно, что рН артериальной крови в норме должно быть в пределах 7,37–7,45, а венозной – 7,34–7,43. Различные микроорганизмы также весьма чувствительны к кислотности среды. Так, патогенные микробы быстро развиваются в слабощелочной среде, тогда как кислую среду они не выдерживают. Поэтому для консервирования (маринование, соление) продуктов используют, как правило, кислые растворы, добавляя в них уксус или пищевые кислоты. Большое значение имеет правильный подбор рН и для химико-технологических процессов.

Поддержать нужное значение рН, не дать ему заметно отклониться в ту или другую сторону при изменении условий возможно при использовании так называемых буферных (от англ. buff – смягчать толчки) растворов. Такие растворы часто представляют собой смесь слабой кислоты и ее соли или слабого основания и его соли. Подобные растворы «сопротивляются» в определенных пределах (которые называются емкостью буфера) попыткам изменить их рН. Например, если попытаться немного подкислить смесь уксусной кислоты и ацетата натрия, то ацетат-ионы свяжут избыточные ионы Н + в малодиссоциированную уксусную кислоту, и рН раствора почти не изменится (ацетат-ионов в буферном растворе много, так как они образуются в результате полной диссоциации ацетата натрия). С другой стороны, если ввести в такой раствор немного щелочи, избыток ионов ОН – будет нейтрализован уксусной кислотой с сохранением значения рН. Аналогичным образом действуют и другие буферные растворы, причем каждый из них поддерживает определенное значение рН. Буферным действием обладают также растворы кислых солей фосфорной кислоты и слабых органических кислот – щавелевой, винной, лимонной, фталевой и др. Конкретное значение рН буферного раствора зависит от концентрации компонентов буфера. Так, ацетатный буфер позволяет поддерживать рН раствора в интервале 3,8–6,3; фосфатный (смесь КН 2 РО 4 и Na 2 HPO 4) – в интервале 4,8 – 7,0, боратный (смесь Na 2 B 4 O 7 и NaOH) – в интервале 9,2–11 и т.д.

Многие природные жидкости обладают буферными свойствами. Примером может служить вода в океане, буферные свойства которой во многом обусловлены растворенным углекислым газом и гидрокарбонат-ионами НСО 3 – . Источником последних, помимо СО 2 , являются огромные количества карбоната кальция в виде раковин, меловых и известняковых отложений в океане. Интересно, что фотосинтетическая деятельность планктона – одного из основных поставщиков кислорода в атмосферу, приводит к повышению рН среды. Происходит это в соответствии с принципом Ле Шателье в результате смещения равновесия при поглощении растворенного углекислого газа: 2Н + + СО 3 2– « Н + + НСО 3 – « Н 2 СО 3 « Н 2 О + СО 2 . Когда в ходе фотосинтеза CO 2 + H 2 O + hv ® 1/n(CH 2 O) n + O 2 из раствора удаляется СО 2 , равновесие смещается вправо и среда становится более щелочной. В клетках организма гидратация СО 2 катализируется ферментом карбоангидразой.

Клеточная жидкость, кровь также являются примерами природных буферных растворов. Так, кровь содержит около 0,025 моль/л углекислого газа, причем его содержание у мужчин примерно на 5% выше, чем у женщин. Примерно такая же в крови концентрация гидрокарбонат-ионов (их тоже больше у мужчин).

При исследовании почвы рН является одной из наиболее важных характеристик. Разные почвы могут иметь рН от 4,5 до 10. По значению рН, в частности, можно судить о содержании в почве питательных веществ, а также о том, какие растения могут успешно расти на данной почве. Например, рост фасоли, салата, черной смородины затрудняется при рН почвы ниже 6,0; капусты – ниже 5,4; яблони – ниже 5,0; картофеля – ниже 4,9. Кислые почвы обычно менее богаты питательными веществами, поскольку хуже удерживают в себе катионы металлов, необходимые растениям. Например, попавшие в почву ионы водорода вытесняют из нее связанные ионы Са 2+ . А вытесненные из глинистых (алюмосиликатных) пород ионы алюминия в больших концентрациях токсичны для сельскохозяйственных культур.

Для раскисления кислых почв используют их известкование – внесение веществ, постепенно связывающих избыток кислоты. Таким веществом могут служить природные минералы – мел, известняк, доломит, а также известь, шлак с металлургических заводов. Количество внесенного раскислителя зависит от буферной емкости почвы. Например, для известкования глинистой почвы требуется больше раскисляющих веществ, чем для песчаной.

Большое значение имеют измерения рН дождевой воды, которая может оказаться довольно кислой из-за присутствия в ней серной и азотной кислот. Эти кислоты образуются в атмосфере из оксидов азота и серы (IV), которые выбрасываются с отходами многочисленных производств, транспорта, котельных и ТЭЦ. Известно, что кислотные дожди с низким значением рН (менее 5,6) губят растительность, живой мир водоемов. Поэтому постоянно ведется контроль рН дождевой воды.

Илья Леенсон

Вспомните:

Реакция нейтрализации — это реакция между кислотой и щелочью, в результате которой образуются соль и вода;

Под чистой водой химики понимают химически чистую воду, не содержащую никаких примесей и растворенных солей, т. е. дистиллированную воду.

Кислотность среды

Для различных химических, промышленных и биологических процессов очень важной характеристикой является кислотность растворов, характеризующая содержание кислот или щелочей в растворах. Поскольку кислоты и щелочи являются электролитами, то для характеристики кислотности среды используют содержание ионов H+ или OH - .

В чистой воде и в любом растворе вместе с частицами растворенных веществ присутствуют также ионы H+ и OH - . Это происходит благодаря диссоциации самой воды. И хотя мы считаем воду неэлектролитом, тем не менее она может диссоциировать: H 2 O ^ H+ + OH - . Но этот процесс происходит в очень незначительной степени: в 1 л воды на ионы распадается только 1 . 10 -7 моль молекул.

В растворах кислот в результате их диссоциации появляются дополнительные ионы H+. В таких растворах ионов H+ значительно больше, чем ионов OH - , образовавшихся при незначительной диссоциации воды, поэтому эти растворы называют кислотными (рис. 11.1, слева). Принято говорить, что в таких растворах кислотная среда. Чем больше ионов H+ содержится в растворе, тем больше кислотность среды.

В растворах щелочей в результате диссоциации, наоборот, преобладают ионы OH - , а катионы H+ ввиду незначительной диссоциации воды почти отсутствуют. Среда таких растворов щелочная (рис. 11.1, справа). Чем выше концентрация ионов OH - , тем более щелочной является среда раствора.

В растворе поваренной соли количество ионов H+ и OH - одинаково и равно 1 . 10 -7 моль в 1 л раствора. Такую среду называют нейтральной (рис. 11.1, по центру). Фактически это означает, что раствор не содержит ни кислоты, ни щелочи. Нейтральная среда характерна для растворов некоторых солей (образованных щелочью и сильной кислотой) и многих органических веществ. У чистой воды также нейтральная среда.

Водородный показатель

Если сравнивать вкус кефира и лимонного сока, то можно смело утверждать, что лимонный сок намного кислее, т. е. кислотность этих растворов разная. Вы уже знаете, что в чистой воде также содержатся ионы H+, но кислого вкуса воды не ощущается. Это объясняется слишком малой концентрацией ионов H+. Часто бывает недостаточно сказать, что среда кислотная или щелочная, а необходимо количественно ее охарактеризовать.

Кислотность среды количественно характеризуют водородным показателем pH (произносится «пэ-аш»), связанным с концентрацией

ионов Гидрогена. Значение pH соответствует определенному содержанию катионов Гидрогена в 1 л раствора. В чистой воде и в нейтральных растворах в 1 л содержится 1 . 10 7 моль ионов H+, а значение pH равно 7. В растворах кислот концентрация катионов H+ больше, чем в чистой воде, а в щелочных растворах меньше. В соответствии с этим меняется и значение водородного показателя pH: в кислотной среде он находится в пределах от 0 до 7, а в щелочных — от 7 до 14. Впервые водородный показатель предложил использовать датский химик Педер Сёренсен.

Вы могли заметить, что значение pH связано с концентрацией ионов H+. Определение pH напрямую связано с вычислением логарифма числа, которое вы будете изучать на уроках математики в 11 классе. Но взаимосвязь между содержанием ионов в растворе и значением pH можно проследить по следующей схеме:



Значение рН водных растворов большинства веществ и природных растворов находится в интервале от 1 до 13 (рис. 11.2).

Рис. 11.2. Значение рН различных природных и искусственных растворов

Сёрен Педер Лауриц Сёренсен

Датский физико-химик и биохимик, президент Датского королевского общества. Окончил Копенгагенский университет. В 31 год стал профессором Датского политехнического института. Возглавлял престижную физико-химическую лабораторию при пивоваренном заводе Карлсберга в Копенгагене, где сделал свои главные научные открытия. Основная научная деятельность посвящена теории растворов: он ввел понятие о водородном показателе (рН), изучал зависимость активности ферментов от кислотности растворов. За научные достижения Сёренсен внесен в перечень «100 выдающихся химиков XX века», но в истории науки он остался прежде всего как ученый, который ввел понятия «рН» и «рН-метрия».

Определение кислотности среды

Для определения кислотности раствора в лабораториях чаще всего используют универсальный индикатор (рис. 11.3). По его окраске можно определить не только наличие кислоты или щелочи, но и значение рН раствора с точностью до 0,5. Для более точного измерения рН существуют специальные приборы — рН-метры (рис. 11.4). Они позволяют определить рН раствора с точностью до 0,001-0,01.

Используя индикаторы или рН-метры, можно следить за тем, как протекают химические реакции. Например, если к раствору натрий гидроксида приливать хлоридную кислоту, то произойдет реакция нейтрализации:

Рис. 11.3. Универсальным индикатором определяют приблизительное значение рН

Рис. 11.4. Для измерения pH растворов используют специальные приборы — рН-метры: а — лабораторный (стационарный); б — портативный

В этом случае растворы реагентов и продуктов реакции бесцветны. Если же в исходный раствор щелочи поместить электрод рН-метра, то о полной нейтрализации щелочи кислотой можно судить по значению рН образованного раствора.

Применение водородного показателя

Определение кислотности растворов имеет большое практическое значение во многих областях науки, промышленности и других сферах жизни человека.

Экологи регулярно измеряют рН дождевой воды, воды рек и озер. Резкое повышение кислотности природных вод может быть следствием загрязнения атмосферы или попадания в водоемы отходов промышленных предприятий (рис. 11.5). Такие изменения влекут за собой гибель растений, рыбы и других обитателей водоемов.

Водородный показатель очень важен для изучения и наблюдения процессов, происходящих в живых организмах, т. к. в клетках протекают многочисленные химические реакции. В клинической диагностике определяют pH плазмы крови, мочи, желудочного сока и др. (рис. 11.6). Нормальное значение pH крови — от 7,35 до 7,45. Даже небольшое изменение pH крови человека вызывает серьезные заболевания, а при рН = 7,1 и ниже начинаются необратимые изменения, которые могут привести к смерти.

Для большинства растений важна кислотность почвы, поэтому агрономы заранее проводят анализ почв, определяя их рН (рис. 11.7). Если кислотность слишком велика для определенной культуры, почву известкуют — добавляют мел или известь.

В пищевой промышленности при помощью кислотно-основных индикаторов проводят контроль качества продуктов питания (рис. 11.8). Например, в норме для молока pH = 6,8. Отклонение от этого значения свидетельствует либо о наличии посторонних примесей, либо о его скисании.

Рис. 11.5. Влияние уровня pH воды в водоемах на жизнедеятельность растений в них

Важным является значение pH для косметических средств, которые мы используем в быту. В среднем для кожи человека pH = 5,5. Если кожа контактирует со средствами, кислотность которых существенно отличается от этого значения, то это влечет преждевременное старение кожи, ее повреждение или воспаление. Было замечено, что у прачек, которые длительное время использовали для стирки обычное хозяйственное мыло (pH = 8-10) или стиральную соду (Na 2 CO 3 , pH = 12-13), кожа рук становилась очень сухой и покрывалась трещинами. Поэтому очень важно использовать различные косметические средства (гели, кремы, шампуни и т. д.) с pH, близким к естественному pH кожи.

ЛАБОРАТОРНЫЕ ОПЫТЫ № 1-3

Оборудование: штатив с пробирками, пипетка.

Реактивы: вода, хлоридная кислота, растворы NaCl, NaOH, столовый уксус, универсальный индикатор (раствор или индикаторная бумага), пищевые продукты и косметическая продукция (например, лимон, шампунь, зубная паста, стиральный порошок, газированные напитки, соки и т. д.).

Правила безопасности:

Для опытов используйте небольшие количества реактивов;

Остерегайтесь попадания реактивов на кожу, в глаза; при попадании едкого вещества смойте его большим количеством воды.

Определение ионов Гидрогена и гидроксид-ионов в растворах. Установление приблизительного значения pH воды, щелочных и кислых растворов

1. В пять пробирок налейте по 1-2 мл: в пробирку № 1 — воды, № 2 — хлоридной кислоты, № 3 — раствора натрий хлорида, № 4 — раствора натрий гидроксида и № 5 — столового уксуса.

2. В каждую пробирку добавьте по 2-3 капли раствора универсального индикатора или опустите индикаторную бумагу. Определите pH растворов, сравнивая цвет индикатора по эталонной шкале. Сделайте выводы о наличии в каждой пробирке катионов Гидрогена или гидроксид-ионов. Составьте уравнения диссоциации этих соединений.

Исследование pH пищевой и косметической продукции

Испытайте универсальным индикатором образцы пищевых продуктов и косметической продукции. Для исследования сухих веществ, например, стирального порошка, их необходимо растворить в небольшом количестве воды (1 шпатель сухого вещества на 0,5-1 мл воды). Определите pH растворов. Сделайте выводы о кислотности среды в каждом из исследованных продуктов.


Ключевая идея

Контрольные вопросы

130. Наличием каких ионов в растворе обусловлена его кислотность?

131. Какие ионы содержатся в избытке в кислотных растворах? в щелочных?

132. Какой показатель количественно описывает кислотность растворов?

133. Каково значение рН и содержание ионов H+ в растворах: а) нейтральных; б) слабокислотных; в) слабощелочных; г) сильнокислотных; д) сильнощелочных?

Задания для усвоения материала

134. Водный раствор некоторого вещества имеет щелочную среду. Каких ионов больше в этом растворе: H+ или OH - ?

135. В двух пробирках находятся растворы нитратной кислоты и нитрата калия. Какие индикаторы можно использовать для определения, в какой пробирке содержится раствор соли?

136. В трех пробирках находятся растворы барий гидроксида, нитратной кислоты и кальций нитрата. Как с помощью одного реактива распознать эти растворы?

137. Из приведенного перечня выпишите отдельно формулы веществ, растворы которых имеют среду: а) кислотную; б) щелочную; в) нейтральную. NaCl, HCl, NaOH, HNO 3 , H 3 PO 4 , H 2 SO 4 , Ba(OH) 2 , H 2 S, KNO 3 .

138. Дождевая вода имеет рН = 5,6. Что это означает? Какое вещество, содержащееся в воздухе, при растворении в воде определяет такую кислотность среды?

139. Какая среда (кислотная или щелочная): а) в растворе шампуня (рН = 5,5);

б) в крови здорового человека (рН = 7,4); в) в желудочном соке человека (рН = 1,5); г) в слюне (рН = 7,0)?

140. В составе каменного угля, используемого на теплоэлектростанциях, содержатся соединения Нитрогена и Сульфура. Выброс в атмосферу продуктов сжигания угля приводит к образованию так называемых кислотных дождей, содержащих небольшие количества нитратной или сульфитной кислот. Какие значения рН характерны для такой дождевой воды: больше 7 или меньше 7?

141. Зависит ли рН раствора сильной кислоты от ее концентрации? Ответ обоснуйте.

142. К раствору, содержащему 1 моль калий гидроксида, прилили раствор фенолфталеина. Изменится ли окраска этого раствора, если к нему добавить хлоридную кислоту количеством вещества: а) 0,5 моль; б) 1 моль;

в) 1,5 моль?

143. В трех пробирках без надписей находятся бесцветные растворы натрий сульфата, натрий гидроксида и сульфатной кислоты. Для всех растворов измерили значение рН: в первой пробирке — 2,3, во второй — 12,6, в третьей — 6,9. В какой пробирке содержится какое вещество?

144. Ученик купил в аптеке дистиллированную воду. рН-метр показал, что значение рН этой воды равно 6,0. Затем ученик прокипятил эту воду в течение длительного времени, заполнил контейнер до верха горячей водой и закрыл крышкой. Когда вода остыла до комнатной температуры, рН-метр определил значение 7,0. После этого ученик трубочкой пропускал воздух через воду, и рН-метр снова показал 6,0. Как можно объяснить результаты этих измерений рН?

145. Как вы считаете, почему в двух бутылках уксуса от одного производителя могут содержаться растворы с несколько различными значениями рН?

Это материал учебника

Выбор редакции
В конце апреля астрономы в северном полушарии получат возможность наблюдать метеоритный дождь Лириды, который является пыльным следом ,...

Как вы думаете, если бы Луна была ближе к нашей планете, чем сейчас, как бы она выглядела? Но давайте обо всем по порядку. Ученые – люди...

Споры о том, реальны ли путешествия во времени, не утихают годами. Раньше считалось, что такие истории - удел поклонников теорий...

В космосе нет атмосферы, там никогда не идет дождь, а на геостационарных орбитах никогда не наступает ночь: это идеальное место для...
В последующие годы многие страны заинтересовались космической солнечной энергетикой, включая Японию, Китай и несколько европейских стран....
Акула – самый опасный хищник моряАкула предшественник динозавра. Она старше динозавров на 200 миллионов лет. При этом, за 450 миллионов...
Представление о существовании универсальной космической энергии, которую человек может использовать и с помощью которой реализуются...
Архимандрит Мелхиседек (Артюхин).Беседы с батюшкой «Где просто, там ангелов со сто…» В ноябре 1987 г. Оптина Пустынь была возвращена...
В а н я (в кучерском армячке). Папаша! кто строил эту дорогу? П а п а ш а (в пальто на красной подкладке), Граф Петр Андреевич...