Глубинная бомба бб 1. Корабельные глубинные бомбы и бомбометы. Как же действует глубинная бомба


Убийца субмарин

Как уже говорилось в главе 1, эсминец появился как носитель торпедного оружия, но вскоре его начали использовать как патрульное и дозорное судно, как разведчика, как «флотского порученца». А закончил Первую Мировую войну эсминец в ранге злейшего врага подводных лодок.

Эсминцы находились на переднем крае борьбы с подводными лодками в годы Первой Мировой войны и показали свои наступательные качества - как охотники за подводными лодками - и оборонительные - как защитники конвоев. К концу войны репутация эсминца как противолодочного корабля прочно установилась.

В то же время, заявление, что подводная лодка встретила в современном эсминце достойного противника, как и все банальные истины, нуждается в уточнении. Инженеры-кораблестроители упорно работали, чтобы улучшить характеристики подводных судов. По крайней мере в течение 10 лет великие державы, скованные ограничениями на строительство надводных кораблей, были вынуждены сосредоточить все усилия на развитии и строительстве кораблей подводных. В результате немецкие подводные лодки, как, впрочем, и лодки союзников, ко Второй Мировой войне были значительно усовершенствованы и отличались от лодок Первой Мировой войны даже больше, чем современный «Форд» от знаменитой «Модели Т».

Немецкая подводная лодка, построенная в 1939 году, была прочной, глубоководной и быстроходной. Она могла нанести нокаутирующий удар. Ее торпеды были гораздо более опасными, чем «жестяные рыбки» Первой Мировой. Дальность плавания была значительно увеличена. Такой была лодка в самом начале войны. Но постепенно она становилась еще более быстроходной, прочной и глубоководной. Лодку постройки 1943 года было очень трудно повредить и еще труднее потопить. Летом этого года одна из таких лодок была настигнута американскими противолодочными силами возле Тринидада. 6 самолетов ВМФ, 1 дирижабль ВМФ и 1 армейский бомбардировщик 17 часов гоняли лодку, прежде чем уничтожили ее. Современные подводные лодки обладали очень большим запасом выносливости.

С другой стороны, и эсминцы вступили в Битву за Атлантику оснащенные замечательными новыми системами обнаружения. Именно в этой области эсминец сразу получил решительное преимущество над своим партнером по смертельной игре в «кошки-мышки». Но недостаточно противника только обнаружить. Его требуется уничтожить.

Требовалось новое противолодочное оружие. Требовалась взрывчатка с повышенной силой детонации, чтобы сокрушить усиленный прочный корпус лодки. Требовались глубинные бомбы с увеличенной скоростью погружения, чтобы повысить точность бомбометания. Требовались бомбосбрасыватели и бомбометы, сбрасывающие серии бомб за более короткий срок и повышающие плотность накрытия. Требовались улучшенные системы управления огнем.

Британские эсминцы вступили в Битву за Атлантику с противолодочным боезапасом эпохи Первой Мировой войны. Американские эсминцы периода «вооруженного нейтралитета» имели такой же боезапас. Но старая надежная «бочка» в условиях Битвы за Атлантику оказалась недостаточно эффективной. От американских ученых и инженеров потребовали срочно увеличить радиус поражающего действия глубинной бомбы и улучшить ее конструкцию. Управление Вооружений американского флота не заставило ждать долго и разработало обтекаемую глубинную бомбу каплевидной формы.

Затем в 1942 году появилось новое противолодочное оружие - многоствольный бомбомет «хеджехог». Залп «хеджехога», выстреливаемый вперед по ходу эсминца, имел то преимущество, что покрывал большую площадь. Позднее была создана уменьшенная модель бомбомета, названная «мышеловкой», ее устанавливали на небольших кораблях. Уже в конце войны британские ученые создали новый бомбомет «Сквид». Эти изобретения родились по необходимости и прошли долгий путь, прежде чем начали поражать немецкие лодки.

Но даже старая «бочка» не была отправлена в отставку.

Хотя она была неуклюжей, но имела и положительные качества, прежде всего - большой размер. И довольно часто серия «бочек» оказывалась смертоносной для лодки.

Глубинные бомбы

Глубинные бомбы, используемые американскими эсминцами в годы Второй Мировой войны, по форме и размерам напоминали топливные бочки по 25 и 50 галлонов. Они содержали в себе заряды в 300 и 600 фунтов ТНТ. На палубе корабля эти бомбы были достаточно безопасными, но когда взрыватель активировался давлением воды, они превращались в смертоносный снаряд. Взрыватель бомбы располагался в трубке по оси цилиндра и представлял собой попросту гидростат, срабатывающий от повышения давления. С помощью наружных регуляторов бомбу можно было установить на взрыв на различной глубине.

В начале войны корабль, находящийся в опасном районе, обычно держал бомбы установленными для взрыва на средней глубине, чтобы сэкономить время на случай внезапной атаки. Но потом от этого отказались ради повышения безопасности. Выяснилась опасность поражения людей в воде при взрыве бомб, ушедших в глубину вместе с тонущим кораблем. После этого глубинные бомбы стали держать на предохранителе до самого момента сброса в воду.

Чтобы повредить лодку, бомба совсем не обязательно должна была попасть в нее. Так как жидкости практически несжимаемы, то относительно небольшая сила, приложенная к ограниченному объему, может создать высокое давление.

Конечно, океан нельзя считать «ограниченным объемом». Но сила подводного взрыва легко передается и создает большие давления на небольшом расстоянии от его центра. Если лодка оказывается недалеко от места взрыва, создаваемое им давление почти целиком передается на корпус, причем почти равномерно по всей его поверхности. Конечно, прямое попадание было бы более предпочтительным, однако оно не обязательно. Взрыв бомбы рядом с лодкой может разрушить ее корпус, вызвать множество течей, вывести из строя расположенные внутри лодки механизмы.

Разумеется, подводная лодка не будет изображать из себя неподвижную мишень для глубинных бомб. Она слышит, что делает находящийся на поверхности охотник, и прежде чем бомбы полетят вниз, лодка сделает все возможное, чтобы уклониться от этих «гостинцев».

Такие действия называются «маневрами уклонения». Подводная лодка может начать их сразу, как только заподозрит, что ее обнаружили. Она может применить их в последнюю секунду, чтобы увернуться от уже нацеленного залпа. Чтобы уйти от глубинных бомб, подводная лодка меняет курс, скорость, глубину, замирает без движения и дрейфует. Она может найти «лисью нору» на дне и лежать неподвижно, выключив все механизмы, чтобы притвориться уничтоженной. Она может идти зигзагом впереди охотников. Действуя в трех измерениях, подводная лодка имеет такие же возможности маневра, как и самолет в воздухе.

Охотник за подводной лодкой обычно сбрасывает бомбы на движущуюся цель вслепую, следя за целью только с помощью акустики. Но акустический контакт ненадежен, а на малых расстояниях он теряется. Более того, подводная лодка может перемещаться как по горизонтали, так и по вертикали. А сонар не может указать точную глубину цели. В Первую Мировую войну так и не удалось создать прибор для точного определения глубины нахождения лодки, поэтому многие атаки завершились неудачно из-за того, что взрыватели бомб были установлены на слишком большую или слишком малую глубину. В начале Второй Мировой войны противолодочные корабли оказались в аналогичном положении.

Разумеется, самым важным фактором является скорость, с которой удается провести атаку после обнаружения цели. Она в первую очередь зависит от бомбосбрасывателей и бомбометов. Но много зависит и от скорости погружения бомбы.

Также ясно, что успех атаки определяется и точностью направления, в котором погружается сброшенная бомба. Старые «бочки» имели невысокую скорость погружения. Сбрасываемые с кормы эсминца, они начинали кувыркаться в кильватерной струе. Такая «подводная акробатика» снижала скорость погружения бомбы и могла увести ее в сторону.

Чтобы устранить эти и другие недостатки, инженеры создали обтекаемую каплевидную глубинную бомбу.

Эта бомба была сконструирована, так как требовалось оружие с повышенной скоростью погружения и более устойчивой подводной траекторией. Это позволяло увеличить точность бомбометания по сравнению с бомбами старых образцов.

Бросьте в бассейн банку тушенки, и вы увидите, как она кувыркается. Вы также убедитесь, что она упадет на дно на некотором расстоянии от точки, где была сброшена. А теперь бросьте в бассейн грушевидный предмет того же веса. Вы увидите, что он погружается гораздо быстрее, всегда тяжелым концом вниз, и упадет именно в той точке, в которой был сброшен.

Совершенно понятно, что каплевидная, или грушевидная, форма глубинной бомбы имела явные преимущества над вульгарной бочкой. Поэтому эсминцы и получили каплевидные бомбы.

Ни одна лодка не могла выдержать долго, когда эсминец начинал швырять эти «капельки». А если одна из них взрывалась у борта лодки - все заканчивалось немедленно.

Устройства для сброса бомб

Эсминцы в годы Второй Мировой войны использовали три типа устройств для сброса глубинных бомб.

Старые глубинные бомбы сначала сбрасывались по простейшему принципу: «катите бочку». На корме корабля была установлена наклонно пара рельсов. Поднимите бочку на рельсы - и пусть себе катится.

К 1918 году были сконструированы бомбосбрасыватели, которые американские эсминцы использовали и во Второй Мировой войне. Это устройство состояло из стеллажа с глубинными бомбами и наклонных направляющих, с которых они могли скатываться. Гидравлический механизм запора мог управляться непосредственно с места, а мог дистанционно с мостика корабля. Кроме того, запорами можно было управлять вручную, без всякой гидравлики.

Обычно такие бомбосбрасыватели устанавливались попарно на корме корабля, каждый имел отдельное управление. В расчет бомбосбрасывателя включался артиллерийский унтер-офицер, который руководил загрузкой бомб и специальным ключом устанавливал глубину на взрывателях. Обычно эти установки давал офицер, заведующий противолодочным оружием, когда корабль выходил в атаку.

Бомбосбрасыватель назывался «вспомогательным постом сброса бомб». Как правило, их сбрасывали дистанционно с мостика с помощью специального пульта. Обычно процедура выглядела следующим образом. Отдается команда: «Сбросить среднюю серию». Это означало: «Сбросить 6 глубинных бомб, интервал 5 секунд, установка на 150 футов, приготовиться… Товсь!» Затем следовали команды: «Первая пошла! Вторая пошла!..» Человек за пультом послушно откликался: «Есть!»

Существовало несколько стандартных вариантов серий. Иногда можно было услышать приказ: «Приготовить мелководную серию». Позднее на каждом корабле были отработаны свои собственные стандартные приемы.

Термин «бомбомет» применялся к устройству, которое выбрасывало глубинную бомбу через борт. Этот термин также применялся для обозначения боевого поста, с которого заряжался бомбомет и производился выстрел. Такие посты обычно назывались «бомбометы правого борта» и «бомбометы левого борта», либо еще более конкретно: «бомбомет № 3».

Так как бомбы с кормовых бомбосбрасывателей ложились только по курсу корабля, чтобы расширить площадь накрытия, требовался какой-то метатель. Так появилось «Y-орудие». Оно было создано в 1918 году и могло кидать в воду 2 глубинные бомбы. По форме этот бомбомет напоминал букву «Y» или огромную рогатку. Однако он работал как пушка, а не как рогатка. Глубинные бомбы помещались в лоток на стволе бомбомета и выбрасывались за борт взрывом специального патрона.

«Y-орудие» позволяло класть бомбы справа и слева от линии курса на безопасном расстоянии от корабля. Однако оно устарело после появления «К-орудия».

Установленный к 1942 году на большинстве американских эсминцев бомбомет «К-орудие» использовался чаще других во время битвы против гитлеровских подводных лодок. Он весил вчетверо меньше, чем «Y-орудие», и имел один короткий толстый ствол с быстродействующим замком и довольно простым стреляющим механизмом. Бомба укладывалась на специальную люльку, которая сидела на конце ствола «К-орудия». Когда происходил выстрел, «бочка» отправлялась в полет.

Стреляющий механизм, смонтированный в замке бомбомета, позволял производить выстрел либо механически бойком, либо электрически. В бойковом механизме спуск производился специальным шнуром. Электрический запал приводился в действие ключом с мостика корабля.

«К-орудия» устанавливались попарно по обоим бортам корабля. Их ставили обычно столько, сколько помещалось. Дополнительные бомбометы позволяли перекрывать большую площадь и повышали шансы на успех.

Хотя бомбометы обычно считались дополнением бомбосбрасывателей на корме корабля, их использование требовало определенного времени. Серию глубинных бомб можно было поднять на стеллаж и скатить за считанные секунды. Бомбомет требовалось перезаряжать после каждого выстрела, и глубинную бомбу укладывать в люльку тоже после каждого выстрела. Поэтому в первой половине 1942 года появился «зарядный стеллаж». Это устройство значительно ускорило перезарядку бомбометов и облегчило работу расчетов.

Сильное волнение мешало любым операциям с «бочками» и «капельками». 720-фн бомбу Mark 7 и 340-фн бомбу Mark 9 трудно поднимать даже в спокойную погоду, а на качающейся палубе труднее в несколько раз. Если бомба выскользнет из рук расчета, последствия могут оказаться самыми неприятными. Бомба не взорвется. Но тяжелый цилиндр покатится по палубе, круша все на своем пути и угрожая покалечить людей. Если бомба случайно сорвется за борт, а взрыватель не поставлен на предохранитель, то взрыв может произойти под самым бортом, что приведет к повреждению корабля.

Чтобы избежать случайных взрывов, большинство командиров эсминцев предпочитало держать бомбы на предохранителе до того момента, как корабль начнет атаку. Установка глубины взрыва производилась в считанные секунды расчетом бомбомета или бомбосбрасывателя. Но в любом случае сохранялась вероятность того, что корабль будет потоплен во время боя. Если бомбы не будут стоять на предохранителе, они взорвутся, когда корабль скроется под водой. За годы войны это произошло несколько раз, и такие взрывы погубили многих моряков, плававших в воде рядом с местом гибели эсминца. Эти бомбы либо имели неисправности, либо не были поставлены на предохранитель. Классические примеры: эсминец «Хамман» у Мидуэя и эсминец «Стронг» на Соломоновых островах.

И «бочки», и «капельки» имели несколько неприятных особенностей. Они были тяжелыми и неуклюжими. Перед выстрелом их следовало настроить. Их нельзя было «навести на противника» с достаточной точностью. Требовалось создать более удобную в обращении бомбу, и конструкторы справились с этой задачей.

Британские инженеры и капитан 1 ранга американского флота Пол Хэммонд нашли ответ в виде «хеджехога».

Реактивный бомбомет «хеджехог»

В начале 1942 года капитан 1 ранга Хэммонд, служивший в аппарате военно-морского атташе в Лондоне, получил возможность ознакомиться с новым образцом противолодочного оружия. Эта установка использовала принципиально новый способ метания глубинных бомб. Она состояла из стального лотка, в котором были установлены 4 ряда похожих на иглы стержней. Отсюда ее название: «hedgehog» - «еж». Фактически это была ракетная пусковая установка, однако она выпускала необычные ракеты.

Установка выстреливала на значительное расстояние 24 снаряда. Эти снаряды надевались на штыри бомбомета, и зарядка установки была очень простой. Взрыв бомбы происходил при контакте с целью, как у обычного артиллерийского снаряда. Заброшенные в воду, бомбы погружались очень быстро, напоминая стаю стальных барракуд, стальных барракуд со смертельным укусом.

Бомба «хеджехога» требовала прямого попадания в подводную лодку, чтобы взорваться. Она не имела огромного разрывного заряда, как обычная «бочка». Однако ее разрушающее действие при попадании было ничуть не меньше, чем у артиллерийского снаряда. То, что бомба взрывалась только при прямом попадании, в одном отношении было скорее преимуществом, чем недостатком. Обычная глубинная бомба взрывалась, опустившись на заданную глубину, и охотники наверху не могли знать, попала она в яблочко или взорвалась в миле от цели. А вот взрыв бомбы «хеджехога» означал попадание, разве что на мелководье бомба взрывалась, ударившись о дно. В этом случае неопределенность сохранялась, зато в открытом океане взрыв говорил эсминцу, что цель поражена. И это означало, что лодка получила серьезные повреждения.

Капитан 1 ранга Хэммонд сразу стал энтузиастом нового оружия. Из Англии образец «хеджехога» был направлен в Соединенные Штаты. Непривычный бомбомет с его стреляющими штырями и бомбами-ракетами создавался в обстановке строжайшей секретности. Его устанавливали на борту эскортных кораблей тайно, словно размещали контрабанду. После первых испытаний на американских эсминцах новое оружие получило высокую оценку. В конце концов его начали широко устанавливать на фрегатах и эскортных миноносцах.

Взрыв бомбы при прямом попадании был не единственным достоинством «хеджехога». Он обладал и более ценным качеством. Так как снаряды «хеджехога» выбрасывались вперед по ходу корабля, оружие можно было использовать до того, как будет потерян акустический контакт с подводной лодкой. Другими словами, противолодочный корабль следил за лодкой, стреляя из «хеджехога», то есть не вслепую, как при использовании обычных глубинных бомб. При наведении бомбомета имелась возможность в какой-то степени учесть ошибки, которые вносят маневрирование корабля, качка и другие факторы.

Тяжелый многоствольный бомбомет давал слишком сильную отдачу, и потому не подходил для установки на малых кораблях. Поэтому был создан маленький образец, выстреливающий 6 бомб. Это оружие было названо «мышеловкой».

Для испытаний «мышеловки» были установлены на нескольких эсминцах. После получения положительных результатов эти бомбометы начали устанавливать на различных противолодочных кораблях, включая малотоннажные. «Мышеловка» могла нанести сильный удар, ведь ее 65-фн бомба, снаряженная торпексом, содержала столько же взрывчатки, что и бомба «хеджехога». Но, хотя англичане использовали «мышеловку» с большим успехом, американские корабли применяли ее значительно реже. Насколько известно, ни одна подводная лодка не попалась в американскую «мышеловку».

Зато «хеджехог» часто применялся поисково-ударными группами. На Тихом океане среди экипажей эсминцев он пользовался еще большей популярностью, что, вероятно, было обусловлено состоянием моря и погоды.

Установки, стреляющие вперед по курсу корабля, не привели к отмиранию обычных глубинных бомб. В течение всей войны «бочки» и «капельки» исправно летели в воду с палуб эсминцев. Американские эсминцы не имели «хеджехогов», реактивные бомбометы устанавливались на эскортных миноносцах и фрегатах, появившихся в середине войны. Их снаряды могли нанести смертельный укол, но им требовалось попасть в цель. В то же время разрыв обычной глубинной бомбы даже на некотором расстоянии от корпуса лодки тоже приводил к желаемому результату. Обычные глубинные бомбы часто использовались в дополнение к залпу «хеджехога». Они должны были добить поврежденную лодку или достать лодку, погрузившуюся слишком глубоко. Тяжеловесная глубинная бомба была необходима для взрыва на большой глубине, если ситуация не позволяла использовать «хеджехог».

При использовании глубинных бомб и снарядов «хеджехогов» возникала та же проблема, что и при обычной артиллерийской стрельбе - наводка. Требовалось обнаружить лодку и установить ее место нахождения. После неожиданных и сокрушительных успехов подводных лодок в 1914 году англичане приложили максимум усилий, чтобы создать прибор, способный обнаружить погрузившуюся подводную лодку. В результате был создан гидрофон - чувствительный акустический приемник, который мог засечь шумы, создаваемые движущейся подводной лодкой. Вмонтированный в днище корабля, гидрофон передавал оператору шум винтов лодки и давал общее направление на нее. Судя по всему, первый случай обнаружения подводной лодки гидрофоном имел место 23 апреля 1916 года, когда UC-3, попавшая в противолодочную сеть, была выслежена и уничтожена надводным кораблем.

В 1916 году американский флот разработал и начал устанавливать на своих кораблях «слушающее устройство» SC, аналогичное британскому гидрофону. К концу Первой Мировой войны такое устройство широко применялось противолодочными кораблями союзников, а проведенные улучшения сделали его очень чувствительным. Опасаясь обнаружения, подводная лодка могла на короткое время отключать моторы или вообще неподвижно отлеживаться на морском дне. Но гидрофон мог засечь самый слабый звук - даже тихое жужжание моторчика гирокомпаса.

Однако гидрофон имел и существенные недостатки. Прежде всего, он воспринимал шумы винтов всех кораблей, находящихся поблизости, а не только подводной лодки. Чем выше были его акустические качества, тем больше шумов он принимал. Оператор прибора SC не мог отстроиться от посторонних шумов. В головных телефонах постоянно слышались шуршание и потрескивание, поэтому требовалось обладать острым слухом и уметь различать шумы.

Хотя гидрофон и давал общее направление на подводную лодку, он не определял расстояние. В конце Первой Мировой войны охотники за подводными лодками продолжали стоять перед проблемой определения расстояния, от чего зависела точность выхода корабля на цель. Поэтому гидрофон не решал всех проблем. Опытный оператор был способен обнаружить находящуюся под водой лодку и указать примерное направление на нее. Однако он не мог определить расстояние до лодки.

В период между войнами достижения электроники позволили преодолеть некоторые недостатки гидрофона. Британский и американский флоты создали устройство, способное измерять расстояние до погрузившейся лодки. Это высокочастотное электронное устройство действовало, используя принцип эхолокации. Англичане назвали его асдиком, а американцы - сонаром.

Описание электронной части сонара было бы слишком сложным, поэтому мы не будем вдаваться в детали того, «как» это происходит, а лишь кратко изложим, «что» происходит. Сонар расположен в обтекаемом контейнере под днищем корабля. Оператор может использовать его двумя способами: или просто слушать шумы, чтобы засечь звук винтов или внутренних механизмов лодки, или вести эхолокацию, чтобы обнаружить лодку и замерить расстояние до нее. Оба способа основаны на законах гидроакустики. Прослушивание означает именно прослушивание. Оператор сонара слушает все подводные шумы и старается различить среди них те, которые издает подводная лодка. Определение дистанции и направления происходит несколько сложнее.

Эхолокация - это процесс определения пеленга и дистанции до подводного объекта путем посылки направленного звукового сигнала и приема отраженного эха направленным звукоулавливающим устройством. В этом случае оператор сонара посылает в воду острый пучок звуковых импульсов - высокое «динь». Как и радиоволна, акустический сигнал может идти в воде многие мили, пока не встретит какое-то препятствие. Обладая особыми свойствами, акустический сигнал отражается от встреченного объекта. В результате это «динь» превращается в резиновый мячик, который, отскочив от цели, возвращается к бросившему его. Интервал времени до возвращения сигнала (эха) дает расстояние до цели, а траектория дает пеленг на цель.

Кроме того, акустический сигнал, отразившись от движущегося объекта, меняет свою частоту (эффект Допплера). Это может подсказать оператору характер перемещений цели. По величине изменения частоты опытный оператор сонара всегда определит, что это такое: движущийся корабль, неподвижные обломки, подводная лодка или кит.

С появлением сонара многие оптимисты решили, что подводная лодка потеряла свой плащ-невидимку. Любой противолодочный корабль, оснащенный сонаром, мог сесть на хвост лодке. После этого оставалось лишь засыпать ее глубинными бомбами.

И снова оптимизм оказался чрезмерным. Подводные лодки Деница попытались обмануть сонар с помощью имитационных патронов «Pillenwerfer» - специальных химических патронов, создающих облако воздушных пузырьков, отражающих акустический сигнал. Но этот имитатор не создавал эффекта Допплера, и опытные операторы вскоре научились отличать действительные и ложные подводные цели. Поэтому воздушные пузырьки не помогли. Более того, они скорее помогали акустикам определять дистанцию, чем мешали.

Но работа с сонаром требовала от оператора умения быстро ориентироваться в какофонии звуков, пойманных акустическими приемниками, и способности идентифицировать эхо-сигналы. Лишь очень хорошо подготовленный человек мог справиться с этим. И лишь хорошо подготовленные офицеры могли использовать полученную информацию наилучшим образом.

Как уже говорилось, постоянно поддерживать акустический контакт оказалось невозможно. Например, эсминец мог установить контакт в 10.15, потерять его в 10.16, снова восстановить в 10.30, удерживать до 10.45 и снова потерять, выходя в атаку, когда дистанция сократится до 100 ярдов. Более того, грохот разрывов глубинных бомб временно оглушал приемники, а созданные ими водяные вихри помогали подводной лодке скрыться. В таких условиях контакт можно было потерять окончательно.

Морская вода состоит из слоев различной плотности. Эти скачки плотности в основном вызваны перепадами температуры (на поверхности вода, как правило, теплее, чем в глубине) или различным уровнем солености. Подводная лодка может избежать обнаружения сонаром, если укроется под слоем более плотной воды. На границе слоев происходит преломление и отражение акустического сигнала, и луч уходит в сторону. Кроме того, лодка может использовать собственный сонар для обнаружения на поверхности корабля, который охотится за ней.

Поэтому игра в кошки-мышки не всегда заканчивается в пользу охотника. И подводная лодка совсем не устарела после появления сонара.

Опыты с гидролокаторами начались на американских эсминцах еще в 1934 году. Это устройство было установлено на кораблях ДЭМ-20 капитана 2 ранга Дж. К. Джоунса. Эсминцы «Раберн», «Уотерс», «Тэлбот» и «Дент», а также 2 подводные лодки стали первыми американскими кораблями, получившими гидролокаторы. Когда ситуация в Европе начала принимать угрожающий характер, флот решил ввести в строй старые четырехтрубники и оснастить их сонарами для использования в качестве противолодочных кораблей. К сентябрю 1939 года около 60 эсминцев американского флота получили сонар. В этот же период флот открыл первую школу гидроакустиков.

Школы гидроакустиков

В 1939 году в Сан-Диего была создана школа гидроакустиков Западного Побережья. Начало было весьма скромным. Школе передали пару эсминцев ДЭМ-20, базирующихся в Сан-Диего. Они должны были демонстрировать работу сонара и учить обращению с ним. Но постепенно школа в Сан-Диего расширялась, и в конце концов в ней уже занимались 1200 курсантов.

Одновременно была создана школа Восточного Побережья. Она открылась на базе подводных лодок в Нью-Лондоне 15 ноября 1939 года. Начальником школы был назначен капитан 1 ранга Ричард С. Эдвардс. Инструктором служил старший радист У.Э. Брасуэлл. Первый класс гидроакустиков состоял всего из 16 человек, которые занимались на 4 четырехтрубниках Атлантического флота. Этими эсминцами были «Бернаду», «Коул», «Дюпон» и «Эллис».

Осенью 1940 года школа была передислоцирована в Ки-Уэст во Флориду, где погода и море больше подходили для учебных занятий по гидроакустике. Капитан 1 ранга Эдвардс, который стал командующим подводными силами Атлантического флота, вернулся в строй. Школа в Ки-Уэсте открылась в декабре 1940 года, и ее начальником стал капитан 2 ранга Э.Г. Джоунс, командир ДЭМ-54. Этот дивизион - эсминцы «Рупер», «Джейкоб Джоунс», «Герберт» и «Дикерсон» - обеспечивал учебный процесс.

Школа в Ки-Уэсте и школа в Сан-Диего работали с полным напряжением, когда Соединенные Штаты вступили в войну. К этому времени уже 170 американских эсминцев были оснащены сонарами.

Отдельные учебные центры были созданы в Куонсете (штат Род-Айленд), на Бермудах, в Гуантанамо, на Тринидаде, в Ресифе (Бразилия). Обучение проводилось на американских эсминцах и других противолодочных кораблях, а роль целей исполняли американские подводные лодки. Аналогичные центры были открыты в Пирл-Харборе и других базах Тихоокеанского флота.

Школа противолодочной борьбы в Майами

Сначала их насмешливо называли «Флотом Дональда Дака» - разномастное сборище больших и малых охотников, вооруженных яхт и вообще всего, что могло плавать и гоняться за вражескими подводными лодками. Сначала они использовали 180-футовых охотники РСЕ, но в 1943 году появились эскортные миноносцы. «Дональд Дак» наращивал мускулы.

Тем временем в Майами была организована школа противолодочной борьбы, официально названная Центром подготовки охотников за подводными лодками. Ее задачей была подготовка офицеров и матросов для службы на кораблях «Флота Дональда Дака». Так как команды охотников РС и SC комплектовались резервистами, многие из которых ранее вообще не видели моря, требовалась большая работа.

Школа официально открылась в Майами 26 марта 1942 года. 8 апреля капитан 2 ранга Э.Ф. МакДаниэл, ветеран-миноносник, только что командовавший в Северной Атлантике эсминцем «Ливермор», стал ее начальником. Он был посредственным учителем, но отлично знал все особенности «бочек» и «капелек».

К концу 1943 года школу закончили более 10000 офицеров и 37000 матросов. Ими были укомплектованы около 400 малых охотников SC, 213 больших охотников РС, 200 противолодочных судов других классов и 285 эскортных миноносцев. Маленькие охотники и эскортные миноносцы уже гонялись за подводными лодками. Когда начался 1944 год, уже никто не осмеливался крякнуть про «Флот Дональда Дака».

Маленькие, слабо вооруженные SC были легковесами на ринге противолодочной войны и вряд ли могли сражаться с подводной лодкой в открытую. Однако они взяли на себя охрану портов, патрулирование прибрежных районов, сопровождение конвоев. Хотя охотники РС были лишь немного крупнее, они все-таки сумели потопить несколько океанских подводных лодок, чем мог гордиться любой эсминец. А что говорить об эскортных миноносцах! Прямо из Майами они бросились в гущу боев. Эскортные миноносцы были рулевым колесом «поисково-ударной машины», которая ликвидировала подводную угрозу в Атлантике, на Тихом океане, в Средиземном море.

Экипажи противолодочных кораблей, оглядываясь назад, могут вспомнить школу противолодочной борьбы в Майами с чувством гордости за свою «альма матер». Десятки и сотни моряков прошли через учебный центр в заливе Бискейн, «Академию МакДаниэла». Это название в полной мере отвечает заслугам человека, превратившего детский сад «Дональда Дака» в академию противолодочной борьбы. Не раз эскортные миноносцы, которые возвращались в Майами, несли на рубках значки, обозначающие победы. Одним из выпускников школы в Майами был командир эскортного миноносца «Ингленд». Даже один этот корабль, как мы еще увидим, полностью оправдал бы существование «Академии МакДаниэла».

Звукоизмерительный рекордер

В начале войны англичане создали новый гидроакустический прибор - звукозаписывающий рекордер. Рекордер не предназначался для обнаружения целей. Он служил скорее для записи обнаружения. Прибор размещался в металлической коробке со стеклянной крышкой и имел рулон графленой бумаги и маленькое перо самописца, которое передвигалось по разматывающемуся рулону, оставляя след. Этот след является записью эхо-сигналов, принимаемых сонаром.

По углу наклона пиков оператор может вычислить скорость сближения с целью. Это позволяет определить, когда корабль должен открыть огонь по лодке. Таким образом, главное значение рекордера заключается в том, что он значительно облегчает управление огнем.

Американский флот получил это очень ценное устройство от англичан осенью 1941 года. Несколько рекордеров сразу были установлены на эсминцах, сопровождающих конвои из Ардженшии. Операторы сонара и офицеры противолодочных кораблей сразу оценили устройство, и рекордер немедленно был принят на вооружение. Контракты на производство рекордеров были выданы американским фирмам 1 февраля 1942 года. После этого рекордеры ставились на корабль вместе с гидролокатором.

Радар против подводной лодки

Как уже отмечалось в предыдущих главах, американские радары были созданы Исследовательской лабораторией ВМФ еще до 1939 года. К 1940 году радар получили 6 американских кораблей. Но в момент нападения на Пирл-Харбор радар еще оставался редкой диковиной. Установка его на корабли была проблемой. Антенны были громоздкими, а аппаратура требовала много места. Операторов не хватало, а электронное оборудование было в дефиците. Когда началась война, лишь немногие противолодочные корабли имели радар. В то время считалось нормальным включать в состав охранения конвоя один корабль с радаром.

Очевидная ценность радара для обнаружения подводных лодок сразу поставила его на первое место в плане неотложных мероприятий по организации противолодочной обороны. Каждый эсминец, каждый сторожевик, каждый противолодочный корабль требовалось оснастить «всевидящим оком», которое могло обнаружить всплывшую лодку сквозь дождь, туман и мрак. Даже если подводная лодка находилась в позиционном положении, выставив над водой одну рубку, луч радара обнаруживал ее, и на экране появлялся характерный блик.

Как известно, впервые американский корабль установил радиолокационный контакт с подводной лодкой 19 ноября 1941 года. Отличился и таким образом вошел в историю эсминец «Лири». В это время он сопровождал конвой НХ-160.

К августу 1942 года большинство боевых кораблей Атлантического флота было оснащено радарами. Это устройство появилось и на кораблях Тихоокеанского флота. Коротковолновой радар модели SG - усовершенствованная модель обнаружения надводных целей - начал поступать на корабли осенью 1942 года. Он давал на экране четкий и легко опознаваемый импульс. В 1943 году был создан самолетный коротковолновой радар. Но так как самолеты действовали совместно с эсминцами, все, что помогало летчику, помогало и миноноснику. Коротковолновой радар стал проклятьем для немецких лодок. Немцы использовали любые средства, пытаясь обмануть поисковый радар. Они выпускали воздушные шары, которые волочили за собой полосы фольги, изображающие цель. Они пытались создать «невидимую» подводную лодку, которая поглощала бы лучи радара. Они пытались забивать работу излучателей. Ничто не действовало. Немецкие приемники не могли обнаружить работу радара с длиной волны 10 см. Даже такой малозаметный предмет, как шноркель, обнаруживался радаром. После войны командующий немецким подводным флотом адмирал Дениц заявил, что его лодки потерпели поражение по двум причинам. Первая - близорукость, проявленная Гитлером, который не сумел обеспечить германский флот достаточным количеством подводных лодок. Вторая - «дальновидность» поискового радара.

Если радар был «глазами» противолодочного корабля, то сонар был его «ушами». Один для обнаружения надводных целей, другой - для обнаружения подводных. Оба давали охотнику дистанцию и пеленг на цель для приборов управления огнем.

Высокочастотный радиопеленгатор

В начале войны Королевский Флот создал метод определения примерного положения немецких подводных лодок на большом расстоянии. Принцип был исключительно простым. Перехватить передачу подводной лодки, а потом определить ее место путем сравнения пеленгов, полученных двумя береговыми станциями.

Любой радиолюбитель знаком с работой петли пеленгатора, с помощью которой маленькие корабли и яхты берут пеленги на береговые станции. Англичане просто вывернули это наизнанку, разместив пеленгаторы на берегу, и стали ловить радиопередачи подводных лодок, находящихся в море. Лодки обычно передавали друг другу различную информацию, поэтому высокочастотные пеленгаторы могли перехватывать эти передачи.

Высокочастотные пеленгаторы (HF/DF, или «Хафф-Дафф») не принимали перехваченные сообщения. Они просто определяли местонахождение работающей станции. Отправитель сообщения мог находиться посреди Атлантики или в Карибском море. Через 10 минут после передачи радиограммы лодка могла погрузиться и направиться в другой район. Однако пока лодка переходила из одного места в другое, всплывая для передачи радиограмм, система пеленгаторов могла определить ее курс и следить за ней день за днем.

Лодка в открытом океане, как правило, не болтается бесцельно. Тщательное слежение с помощью пеленгатора может помочь установить, что она идет на запад из Датского пролива, направляясь к Галифаксу, или повернула на юг к Бермудам. Интенсивные радиопереговоры немецких лодок в определенном районе позволяли операторам пеленгаторных станций предположить, что здесь собирается «волчья стая», возможно, с целью пополнения запасов топлива. Эта информация передавалась с периферийных станций на центральную, где специально подготовленный персонал следил за лодками, находящимися в данном районе или следующими в определенном направлении. В свою очередь, эта информация передавалась противолодочным силам в море. Корабли направлялись на перехват «волчьих стай» или отдельных лодок.

Но если радиопеленгаторы могут дать засечку на большом расстоянии, то почему бы не усовершенствовать эту систему и не начать пеленгацию на малых дистанциях? Почему не установить высокочастотные пеленгаторы на кораблях в море, чтобы перехватывать радиопередачи лодок и определять место тех из них, которые находятся неподалеку? Это позволило бы избежать потери времени при передаче информации с берега.

Видя работу пеленгаторов на канадских кораблях, капитан 1 ранга П.Р. Хейнеман, который только что начал командовать эскортной группой, сразу рекомендовал установить пеленгаторы и на американских кораблях.

В начале осени высокочастотные пеленгаторы были установлены на сторожевиках Береговой Охраны «Спенсер» и «Кэмпбелл». Вскоре после этого пеленгатор был установлен на эсминце «Эндикотт». Позднее, как правило, 2 или 3 эсминца каждой эскадры получали высокочастотные пеленгаторы.

Пеленгаторы стали еще одним средством обнаружения лодок противолодочными силами. Пеленгатор позволял конвою заблаговременно изменить курс, чтобы обойти район сосредоточения подводных лодок. Данные береговых пеленгаторных станций помогали поисково-ударным группам охотиться за лодками противника.

Когда система пеленгации начала приносить свои плоды, немецкие лодки стали соблюдать радиомолчание. Однако для организации действий «волчьей стаи» они были вынуждены выходить в эфир довольно часто. Лодкам также приходилось передавать сведения на берег: рапорты в штаб, подтверждения полученных приказов, сообщения о своих координатах. Подводная лодка не могла молчать все время, иначе Дениц решил бы, что она погибла.

Очень часто так и было, когда американские эсминцы действовали на основании информации, полученной от пеленгаторов.

Отдел противолодочной войны

В начале февраля 1942 года на судостроительной верфи в Бостоне собралась группа офицеров эсминцев и другие лица, имеющие отношение к противолодочной борьбе. В результате этого совещания при штабе Атлантического флота был создан отдел противолодочной войны, который занимался изучением методов и средств борьбы с немецкими подводными лодками, подготовкой инструкторов для школы гидроакустиков Атлантического флота.

Созданный в Бостоне отдел противолодочной войны начал действовать 2 марта 1942 года под руководством капитана 1 ранга У.Д. Бейкера. Вместе с отделом Бейкера работала исследовательская группа по изучению противолодочной войны (ASWORG). Она состояла из лучших гражданских ученых и преподавателей, которые должны были собирать и анализировать всю информацию, касающуюся противолодочной войны, создавать новую аппаратуру, разрабатывать новые методы слежения, атаки и уничтожения подводных лодок.

До этого времени противолодочная борьба велась, что называется, на ощупь. Противолодочные корабли в море не знали стандартных приемов. Не было сформулировано никакой доктрины противолодочных операций. Опыт борьбы с подводными лодками, полученный в ходе Битвы за Атлантику, детально не изучался и не обобщался.

Отдел капитана 1 ранга Бейкера и ASWORG постарались исправить это положение. Начался сбор и анализ статистики. Например, были составлены таблицы попаданий и промахов. Изучалось воздействие глубинных бомб. Сколько бомб Mark 6 требуется для уничтожения лодки? Какая серия бомб наиболее эффективна? Было пересмотрено использование радара и сонара. Тактика эсминцев рассматривалась «под микроскопом». Какие действия наиболее эффективны? Каковы шансы эсминца уничтожить подводную лодку в тех или иных условиях?

В противолодочной войне всегда присутствует неизвестный фактор, который является следствием потери контакта на расстоянии от 200 до 600 ярдов. Глубина погружения лодки также не может быть определена совершенно точно. Офицеры и ученые Бейкера работали день и ночь, чтобы минимизировать влияние этих неизвестных или, хотя бы, заменить предположения достаточно точными оценками.

Поэтому ученые, работающие вместе с отделом противолодочной войны, не только анализировали факты. Они улучшили методы борьбы с подводными лодками. Аналитики и математики ASWORG разработали методы восстановления контакта с подводной лодкой. Они предложили наиболее эффективные варианты серий глубинных бомб: где, сколько штук и на какую глубину. Они начертили математически обоснованные варианты ордера охранения и конвоя: сколько эсминцев ставить в авангарде и на каком расстоянии от транспортов, сколько эсминцев должно идти на флангах, сколько прикрывать тыл.

Ученые ASWORG создали новые инструменты для обнаружения и уничтожения лодок. Но прежде всего они усовершенствовали способы использования уже имеющегося оружия.

Тактика эсминцев (Атака)

Оснащенные противолодочными средствами американские эсминцы вступили в сражения на морях. Как уже говорилось, эскадренные и эскортные миноносцы в годы Второй Мировой войны в качестве противолодочных кораблей выполняли двоякую задачу.

В обороне эсминцы и другие противолодочные корабли использовались как патруль для охраны входов в порты, прибрежных вод и других районов, где существовала подводная угроза. Они охраняли крупные военные корабли и другие суда от нападения подводных лодок. Эта деятельность получила общее название «сопровождение» и «охранение».

В наступлении эсминцы и другие корабли использовались для поиска, атаки и уничтожения подводного противника. Эсминцы, эскортные миноносцы, эскортные авианосцы, действующие в составе поисково-ударных групп, попадали в эту категорию.

Такие общие определения расплывчаты, но все-таки они дают примерное представление об использовании эсминцев в противолодочной войне, а термины «оборонительный» и «наступательный» применимы только для общего определения больших операций. Эсминец, идущий в охранении, часто получает приказ атаковать и уничтожить обнаруженного противника, то есть действовать «наступательно». Эсминец или эскортный миноносец из состава поисково-ударной группы может получить приказ охранять авианосец, пока его товарищи охотятся за подводной лодкой. Но эсминцы и эскортные миноносцы, какие бы задачи они ни выполняли, всегда были готовы атаковать подводного противника.

Совершенно ясно, что противолодочная тактика эсминцев в большой степени определялась тактическими задачами самого корабля. Установив контакт с подводной лодкой, эсминец из состава поисково-ударной группы мог действовать совсем иначе, чем одиночный эсминец, сопровождающий поврежденный крейсер в базу.

Командование миноносных сил флота разработало ряд положений для наиболее типичных ситуаций. Были выработаны типовые схемы и рекомендованы определенные маневры, которые были более или менее стандартизованы, нечто вроде дебютного справочника в шахматах. Вот несколько примеров.

Противолодочный корабль (будем называть его эсминцем) входит в состав охранения конвоя и располагается впереди транспортов. Внезапно он устанавливает гидролокационный контакт или видит бурун перископа прямо перед собой. Ясно, что этот противник представляет серьезную опасность для судов конвоя, которые находятся в нескольких тысячах ярдов позади эсминца. Требуется принять срочные меры, чтобы не дать лодке произвести точный торпедный залп. Поэтому эсминец передает предупреждение по УКВ и идет в атаку, чтобы помешать выходу лодки на позицию залпа и заставить ее погрузиться.

Погрузившаяся подводная лодка не сможет пользоваться перископом для наблюдения за конвоем и произвести расчеты для торпедной стрельбы. Она не сумеет повторить маневры предупрежденного конвоя, который резко изменит курс и уйдет с линии огня. Если подводная лодка выпустила торпеду перед погружением, такой срочный поворот конвоя спасет транспорты от попадания, так как расчеты были произведены с учетом прежнего курса и скорости конвоя.

Эсминец все это время занимает позицию между лодкой и конвоем, пока тот не удалится на значительное расстояние. Чтобы вынудить противника оставаться под водой, эсминец может изредка сбрасывать глубинные бомбы. Пока лодка находится на глубине, она не видит конвой и может вообще потерять его след. Кроме того, скорость лодки в подводном положении невелика. Если лодку загнать под воду и продержать там достаточно долго, она не сумеет догнать надводные корабли.

Когда конвой окажется вне опасности, эсминец один или с помощью других кораблей, если есть возможность отделить их от охранения, может попытаться предпринять наступательные действия: атаковать и уничтожить лодку. Если же обстановка требует иного, он полным ходом возвращается к конвою и занимает свое место в ордере охранения.

Подводная лодка, обнаруженная позади конвоя, не столь опасна хотя бы потому, что транспорты уходят от торпедного залпа, а не идут ему навстречу. Попытка догнать конвой с кормы может затянуться. Поэтому, если продержать лодку под водой достаточно долго, она лишится всех шансов атаковать конвой. В обоих случаях атака эсминцем подводной лодки имеет одну цель: отогнать противника, не дать ему пользоваться перископом и провести торпедную атаку.

Появление радара позволило обнаруживать лодки на большом расстоянии. Гидролокация сделала возможным слежение за лодкой в подводном положении. В ходе войны численность противолодочных сил союзников увеличилась, охранение конвоев и военных кораблей улучшилось. Лишь немногие лодки сумели проникнуть внутрь кольца охранения и провести внезапную торпедную атаку. Противолодочные корабли действовали по заранее разработанному плану, стараясь уничтожить противника. Многие немецкие и японские подводные лодки были уничтожены во время атак, завершивших долгое и упорное преследование.

Прекрасно зная, чем может закончиться эта смертельная игра, подводные лодки совершали самые сложные маневры, стараясь оторваться от преследователей. Но покончить с подводной лодкой, загнанной в глубину, когда она старается уйти от преследования, - задача очень и очень сложная.

Тактика эсминцев (Преследование)

Запасы кислорода на подводной лодке, как известно, ограничены, а подводники должны дышать. Образно выражаясь, подводная лодка сама должна «дышать». В надводном положении она идет на дизелях, а в подводном - на электромоторах. Заряд аккумуляторных батарей кончается, и лодка должна всплыть, чтобы снова зарядить их с помощью дизель-генераторов. Если кончится кислород или сядут батареи, лодка будет просто беспомощна. Более того, затяжное преследование может привести к нервному срыву экипажа. Поэтому лодка должна периодически подниматься на поверхность. Но этот подъем может оказаться последним, если на поверхности ожидает противник с готовыми к стрельбе орудиями.

Очень часто эсминцы и эскортные миноносцы использовали тактику преследования, чтобы экипаж погрузившейся лодки начал задыхаться и истощил свои силы. Доведенные до крайности подводники будут вынуждены всплыть и принять бой на поверхности, но это обычно завершалось катастрофой для подводной лодки.

Тактику преследования может применять одиночный корабль или большая группа охотников, действующих совместно. Естественно, чем больше противолодочных кораблей, тем больше их шансы на успех. Однако во Второй Мировой войне были случаи, когда даже одиночный корабль успешно преследовал подводную лодку, пока та не была вынуждена всплыть, и уничтожал ее.

Типичный случай применения такой тактики может начаться с обнаружения радаром лодки на фланге конвоя. Контакт! Несколько эсминцев охранения выходят из строя и устремляются туда. Лодка погружается и замирает. Эсминцы устанавливают контакт с помощью сонара, и начинается охота.

Партия может начаться с состязания в выносливости между подводной лодкой и кораблями наверху. Подводники знают о начавшемся преследовании и потому используют все уловки, чтобы скрыться. Пользуясь гидролокатором, охотники неотступно следуют за лодкой. Они должны только следить и ждать, когда она будет вынуждена всплыть. Время работает на них в этой игре в кошки-мышки. Время и тот факт, что людям и механизмам требуется воздух.

Разумеется, удержание контакта является ключом к успеху при подобной тактике. Охотники должны висеть на хвосте у лодки. Кроме того, они не должны позволить лодке незаметно всплыть. В этом случае у нее появляется шанс удрать, пользуясь высокой скоростью. Поэтому все корабли-охотники должны вести тщательное наблюдение за горизонтом. Радар работает непрерывно.

Если подводная лодка оставалась под водой в течение дня, после наступления сумерек следует повысить бдительность. Естественно, что лодка попытается ускользнуть от преследователей, используя темноту в качестве прикрытия. В конце Второй Мировой войны появились шноркель и новые устройства для регенерации воздуха, которые ослабили влияние фактора времени. Но большую часть войны лодка не могла находиться под водой более 50 часов. Поэтому тактику преследования следовало рассчитывать, исходя из этого.

Типичный пример: загнанная подводная лодка всплывает, чтобы дать бой противолодочному кораблю. Как только лодка показывается на поверхности, преследователь видит отметку на экране радара и идет на сближение. Измученные многочасовым пребыванием в отравленном воздухе, со взвинченными нервами, подводники бросаются наружу к палубному орудию. В этом случае все преимущества на стороне противолодочного корабля, особенно если это хорошо вооруженный эсминец, эскортный миноносец или сторожевик, который превосходит лодку в скорости и артиллерийской мощи.

Крайне редко подводным лодкам удавалось отбиться от преследователей. Был случай, когда после долгого пребывания под водой лодка всплыла и, тяжело поврежденная, все-таки сумела вырваться на свободу, хотя за ней гнались 4 корабля. Но это была американская лодка «Сэмон» (капитан 2 ранга Г.К. Науман), а преследовали ее японские корабли.

Сопровождение конвоев

Типичный океанский конвой состоял из 40–70 судов, которые следовали в строю из 9 - 14 кильватерных колонн. Расстояние между колоннами составляло около 1000 ярдов, а интервалы в колонне - около 600 ярдов. Поэтому конвой из 11 колонн представляет собой прямоугольник 5 миль по фронту и до 1,5 миль в глубину в зависимости от количества судов в колонне. Каждый транспорт получал номер в зависимости от своего места в строю.

Ответственность за поддержание дисциплины в конвое возлагалась на коммодора, который обычно находился на головном судне центральной колонны. Вице-комодор вел другую колонну. Эскортом командовал, как правило, командир эскадры эсминцев или офицер соответствующего ранга. Он поднимал брейд-вымпел на одном из головных эсминцев, чтобы иметь прямую визуальную связь с коммодором.

Корабли охранения образовывали завесу вокруг конвоя. Места кораблей в ордере тщательно просчитывались с тем, чтобы обеспечить наилучшую защиту транспортов.

Чтобы атаковать конвой, подводная лодка должна была незаметно проникнуть сквозь кольцо охранения и выйти на достаточно малую дистанцию, чтобы гарантировать попадание торпеды. Если лодка находилась вне завесы, стрелять приходилось наугад. Если корабли охранения подтягивались к транспортам, чтобы уплотнить завесу, шансы лодки повышались, так как она получала возможность подойти ближе. С другой стороны, если корабли охранения располагались слишком далеко от транспортов, лодка получала шанс проскочить между ними. Чтобы свести шансы лодки к минимуму, ордер охранения рассчитывался с помощью научных методов. Вероятность для лодки проскользнуть между кораблями должна быть сравнима с вероятностью попадания при торпедном выстреле с дальней дистанции.

Корабли охранения постоянно вели гидролокационный поиск. Радар следил за поверхностью моря, чтобы обнаружить вражескую лодку или рейдер. Его также применяли в условиях плохой видимости для сохранения места в строю.

Движение огромного каравана судов в тумане, при сильной волне или ночью с выключенными огнями требует отличной морской подготовки от всех команд. Каждое торговое судно имеет свои особенности и причуды. Быстроходное может вылезти вперед, а тихоходное - отстать. Поломка машин может заставить судно покинуть место в строю. Столкновение может произойти совершенно неожиданно, особенно если конвой срочно меняет курс или применяет противолодочный зигзаг.

Большие тихоходные конвои получали обозначение «S» от «slow» - «тихоходный». Они обычно следовали постоянным курсом. Применение зигзага часто приносило пользу, но в тихоходных конвоях оно ломало строй, и часть судов отставала. Более того, его тактическая польза была сомнительной. «Сколько кораблей было спасено удачным поворотом, столько же было погублено неудачным». Поэтому тихоходные конвои применяли зигзаг или поворачивали «все вдруг» только в случае атаки или прямой угрозы. И все-таки, чтобы уклониться от притаившейся в засаде «волчьей стаи», тихоходный конвой мог повернуть на 20–40 градусов в сторону от генерального курса и следовать так несколько часов.

Каждому конвою перед выходом в море давался маршрут, который потом мог изменяться приказами по радио. Командир эскорта также мог своей властью изменить курс конвоя, если считал, что этого требует обстановка.

На командире эскорта лежала основная ответственность за переход конвоя. Его группа должна была обеспечить оборону транспортов. Он лично отвечал за действия кораблей охранения. Командир эскорта имел право в определенных пределах менять строй и курс конвоя. Скажем прямо, на его плечах лежал тяжелый груз.

Войсковые конвои относились к другой категории, чем только что описанные тихоходные. Как правило, они состояли из транспортов и вспомогательных судов ВМФ. Быстроходные конвои имели обозначение «F» от «fast» - «быстроходный». Они следовали с более высокой скоростью и получали сильное охранение.

От нападения надводных рейдеров войсковые конвои охраняли линкоры и крейсера. Командовал эскортом, как правило, контр-адмирал, командир дивизии крейсеров или даже линкоров. Количество эсминцев охранения значительно увеличивалось.

Старший из офицеров эсминцев назначался командиром охранения. Он подчинялся командиру эскорта и отвечал за действия эсминцев.

Иногда конвоям придавались эскортные авианосцы. Но чаще «крошки-авианосцы» и эскортные миноносцы сводились в поисково-ударные группы для охоты за «волчьими стаями». Однако эти оперативные группы часто выполняли роль прикрытия конвоя, когда тот проходил через районы их действия.

В начале войны эскортных авианосцев не было, а базовые самолеты не могли прикрывать конвой в открытом океане. Когда они появились, постоянное воздушное прикрытие конвоев изменило ход Битвы за Атлантику. Но большую часть войны основную тяжесть охранения конвоев несли на себе эсминцы. Сотни кораблей и тысячи тонн грузов благополучно пересекли океан, благодаря эффективной противолодочной тактике эсминцев, бестактно называемых «жестянками».

Глубинная бомба - снаряд с сильным взрывчатым веществом или атомным зарядом , заключённым в металлический корпус цилиндрической, сфероцилиндрической, каплеобразной или др. формы. Взрыв глубинной бомбы разрушает корпус подводной лодки и приводит к её уничтожению или повреждению. Взрыв вызывается взрывателем, который может срабатывать: при ударе бомбы о корпус подводной лодки; на заданной глубине; при прохождении бомбы на расстоянии от подводной лодки, не превышающем радиуса действия неконтактного взрывателя. Устойчивое положение глубинной бомбе сфероцилиндрической и каплеобразной формы при движении на траектории придаётся хвостовым оперением - стабилизатором. Подразделяются на авиационные и корабельные; последние применяются пуском реактивных глубинных бомб с пусковых установок, выстреливанием из одноствольных или многоствольных бомбомётов и сбрасыванием с кормовых бомбосбрасывателей.

Первый образец глубинной бомбы был создан в 1914 году и после испытаний поступил на вооружение британского военно-морского флота . Глубинные бомбы нашли широкое применение в 1-й мировой войне и оставались важнейшим видом противолодочного вооружения во 2-й мировой войне 1939-1945 гг. Ядерные глубинные бомбы были сняты с вооружения в 90-х годах. В наши дни глубинные бомбы интенсивно заменяются более точным оружием (например, Ракета-торпеда).

В настоящее время на вооружении авиации ВМФ РФ состоит противолодочная авиационная бомба ПЛАБ-250–120. Вес бомбы - 123 кг, из которых вес ВВ составляет около 60 кг. Длина бомбы - 1500 мм, диаметр - 240 мм.

Энциклопедичный YouTube

    1 / 1

    Коктейль Глубинная Бомба | Submarine | Домашний Бармен

Субтитры

Принцип действия

Основан на практической несжимаемости воды. Взрыв бомбы разрушает или повреждает корпус подводной лодки на глубине. При этом энергия взрыва, моментально возрастая до максимума в центре, переносится к цели окружающими водными массами, через них деструктивно воздействуя на атакуемый военный объект. По причине высокой плотности среды, взрывная волна на своем пути не теряет существенно исходную мощность, но с увеличением расстояния до цели энергия распределяется на большую площадь, и соответственно, радиус поражения ограничен.

Взрыватель срабатывает при ударе о корпус лодки, на определённой глубине, или при прохождении рядом с корпусом.

Обычно глубинные бомбы скатывают с кормы корабля или выстреливают ими из бомбомётной установки. Глубинные бомбы могут также сбрасываться с летательных аппаратов (самолёты , вертолёты), доставляться до места обнаружения подводной лодки с помощью ракет.

Глубинные бомбы отличаются своей низкой точностью - для уничтожения подводной лодки иногда требуется около сотни бомб.

Опытные бармены утверждают, что коктейль «Глубинная бомба» взрывается трижды: сначала в бокале во время приготовления, потом во рту при дегустации, и, наконец, после некоторой задержки – в черепной коробке. Мы рассмотрим классический рецепт и две самых популярных вариации напитка.

Историческая справка. Кто первым додумался опускать рюмку крепкого алкоголя в бокал с пивом неизвестно. В Северной Америке эти коктейли (кроме «Глубинной бомбы» встречаются названия «Bomb shot» и «Boilermarker (Бойлермейкер)») упоминаются в печатных изданиях с 30-х годов XX века. По одной из версий название появилось из-за быстрого опьяняющего эффекта, вызывающего взрыв в глубинах сознания.

В той или иной вариации коктейль не раз появлялся на экранах, например, в фильмах «Тупой и еще Тупее», «На крючке», «Тор», в сериалах «Во все тяжкие» и «В поле зрения».

Классическая «Глубинная бомба»

Барный вариант с ликерами, уложенными слоями поверх бокала. Смотрится красиво, но на первых глотках получается сладкое пиво, что довольно необычно.

Состав и пропорции:

  • светлое пиво – 300 мл;
  • золотая текила – 50 мл;
  • Блю Кюрасао – 10 мл;
  • Куантро – 10 мл;
  • клубничный ликер – 10 мл.

1. Налить пиво в бокал.

2. Аккуратно опустить в пиво рюмку с текилой.

3. Барной ложечкой уложить по стенкам бокала слои ликеров Блю Кюрасао, Куантро и клубничного.

4. Выпить залпом.

Русская «Глубинная бомба»

Конечно же, самая взрывная и опасная. Адаптированный вариант коктейля под отечественные алкогольные традиции, считается разновидностью «Ерша». Легко готовится в домашних условиях. Понравится любителям мешать водку с пивом, но делать это красиво. После нескольких порций даже у продвинутых пользователей случается «взрыв мозга».

Ингредиенты:

  • водка – 50 мл;
  • пиво – 150-200 мл;
  • соль – 1 щепотка.

1. Водку налить в стопку, поставить на 10 секунд в микроволновку.

2. Холодное пиво налить в бокал.

3. Достать стопку с микроволновой печи и поджечь водку. Подождать 5-10 секунд.

4. Посолить пиво, затем бросить стопку с горячей водкой (можно резко, чтобы появились брызги). Выпить залпом.

Если использовать пиво «Corona», а водку заменить текилой (любой), получится «Мексиканская бомба» или «Мексиканский ёрш».

Ирландская «Глубинная бомба»

В состав входят только ирландские спиртные напитки, отсюда и название. Главное отличие – готовится на основе темного пива Гиннес, запоминается легким шоколадным послевкусием.

Появление подводных лодок стало поворотной точкой в истории развития военно-морского флота. Первые субмарины наводили настоящий ужас на моряков, ведь как можно противостоять противнику, скрытому морской пучиной, на удар которого нельзя ответить. Вскоре борьба с подлодками противника стала одной из важнейших боевых задач для любого военно-морского флота. Адмиралам пришлось крепко задуматься над изменением тактики ведения боевых действий и поиском новых инструментов, с помощью которых можно было бы противостоять новой угрозе.

И уже в 1914 году такой инструмент был создан: в Великобритании была испытана первая глубинная бомба – важнейший вид противолодочного оружия, которое стоит на вооружении большинства флотов мира и в наши дни. Первые средства противолодочной обороны, включая глубинные бомбы, не отличались совершенством, поэтому во время Первой и Второй мировой войны немецкие подводники смогли устроить настоящий террор на коммуникациях противника. Но уже к концу Второй мировой войны союзники смогли найти эффективные средства борьбы против германского подводного флота.

Послевоенный период ознаменовался настоящей революцией в развитии подводного флота. Субмарины получили ядерную силовую установку и межконтинентальные баллистические ракеты в качестве основного вооружения. Вопрос борьбы с подводной угрозой превратился в стратегический. Теперь противолодочная оборона стала частью куда более важной задачи – защиты собственной территории от ядерного удара противника. Поэтому для ее решения не жалели средств. Именно в период Холодной войны на вооружении флотов появились ядерные глубинные бомбы и торпеды с ядерной боевой частью. Последние боеприпасы подобного типа были сняты с вооружения еще в 90-е годы прошлого века.

В СССР долгое время на этот вид оружия практически не обращали внимания. Только в начале 30-х годов на вооружение отечественного флота были приняты сразу две глубинные бомбы: ББ-1 и БМ-1. Это были обычные металлические бочки, заполненные тротилом. Они имели взрыватель с часовым механизмом, который позволял поражать цели на глубинах до 100 метров. Во время бомбометания ББ-1 и БМ-1 просто сбрасывали за борт с помощью кормовых или бортовых бомбосбрасывателей. Недостаточная скорость погружения этих боеприпасов затрудняла поражение подводных лодок противника.

Во время войны советские моряки в основном использовали глубинные бомбы, поставленные в страну по ленд-лизу. Американские и английские боеприпасы существенно превосходили советские бомбы по своим основным характеристикам. А значительное увеличение глубин погружения субмарин (200-220 метров), которое стало распространенной тактикой к концу войны, сделало советские боеприпасы практически бесполезными. Хотя, надо отметить, что наиболее совершенные образцы этого оружия в СССР не поставлялись.

В наше время глубинные бомбы постепенно отходят в прошлое, их заменяют более точные виды противолодочного оружия (управляемые торпеды, ракето-торпеды), но в то же время они до сих пор находятся на вооружении крупнейших военно-морских сил мира. Однако прежде чем говорить о современных видах этого оружия, следует дать описание конструкции глубинной бомбы, а также сказать несколько слов об особенностях их применения.

Глубинные бомбы: общее описание и основные особенности

Глубинная бомба – это вид боеприпаса, предназначенный для уничтожения подводных лодок в их боевом (подводном) положении. Он состоит из корпуса, заряда взрывчатого вещества и взрывателя. Вместо обычной взрывчатки, может быть использован ядерный заряд. Взрыватель глубинной бомбы также может быть разным: контактным, бесконтактным или рассчитанным на активацию на заданной глубине. Нередко глубинные бомбы имеют несколько взрывателей.

Контактный взрыватель срабатывает после удара о корпус субмарины, неконтактный – при прохождении боеприпаса на определенном расстоянии от подводной лодки. Неконтактный взрыватель может реагировать на магнитное поле субмарины или издаваемый ею шум. Взрыватель, рассчитанный на срабатывание на определенной глубине, имеет гидростат, который срабатывает от повышения давления и активирует детонатор. Этот тип взрывателя позволяет заранее задавать глубину, на которой произойдет подрыв.

В упрощенном виде глубинная бомба представляет собой цилиндр, заполненный взрывчаткой. Первоначально их и изготавливали в форме бочки. Однако такая форма боеприпаса довольно несовершенна, она обуславливает низкую скорость погружения бомбы, и, как правило, заставляет боеприпас «кувыркаться» в кильватерной струе противолодочного корабля. Бросьте консервную банку в бассейн, и вы увидите, какие кульбиты она будет выполнять во время погружения. Такая «акробатика» не только замедляет погружение боеприпаса, но и значительно уводит его в сторону от точки сброса. Что, в свою очередь, понижает точность бомбометания.

Именно из-за гидродинамического несовершенства от использования глубинных бомб цилиндрической формы давно отказались. Современные боеприпасы этого вида имеют грушевидную или каплеобразную форму, обычно они оснащены хвостовым оперением – стабилизаторами, что еще больше повышает точность их применения.

Как же действует глубинная бомба?

Принцип действия глубинной бомбы основан на том, что вода, как и любая другая жидкость, практически не сжимается. Сила наземного взрыва довольно быстро уменьшается, потому что ударная волна поглощается воздухом и постепенно сходит на нет. В воде ситуация иная, взрывная волна создает большое давление, которое весьма эффективно действует даже на значительном расстоянии от эпицентра. Так что для разрушения корпуса субмарины необязательно прямое попадание (хотя, конечно же, оно предпочтительно). Взрыв глубинной бомбы рядом с подлодкой вполне может разрушить ее корпус или значительно повредить внутренние механизмы подводного корабля. Сила взрыва постепенно уменьшается с увеличением радиуса распространения ударной волны. Наибольшей убийственной силой обладают ядерные глубинные бомбы, радиус их поражения может достигать нескольких тысяч метров.

Естественно, что подводная лодка не изображает из себя неподвижную мишень, а всячески пытается уйти от нацеленного на нее залпа глубинных бомб. Современные средства гидроакустики позволяют субмарине «слышать», что происходит на поверхности и определять момент бомбометания. После чего она начинает маневры уклонения, целью которых является избежать встречи со смертоносными «гостинцами». Следует отметить, что субмарина, действуя в трех измерениях, может довольно успешно уходить от поражения глубинными бомбами. Для этого лодка может менять глубину, курс, скорость, дрейфовать или замирать без движения. Лечь на дно или идти зигзагом, чтобы усложнить противолодочным кораблям их задачу. Маневрирования субмарины во время бомбометания во многом напоминает действие самолета во время ракетной атаки.

Противолодочный корабль сбрасывает глубинные бомбы вслепую, ориентируясь только на данные акустики. Но акустический контакт – это вещь не слишком надежная, он часто прерывается. Поэтому глубинная бомба является весьма неточным оружием, для гарантированного уничтожения подводного корабля, как правило, необходимы сотни бомб.

Одной из главных характеристик глубинной бомбы является скорость ее погружения, чем она выше, тем больше эффективность боеприпаса.

Глубинные бомбы могут применяться по-разному. Первоначально их просто сбрасывали с кормы противолодочных кораблей, но такой способ был не слишком эффективен. Нередко боеприпас после попадания в воду подхватывался кильватерной струей корабля и значительно менял направление своего погружения. Позже для применения глубинных бомб стали использовать бомбометы различных конструкций. Обычно они представляли собой мортиры, из которых бомбы отстреливались с определенным углом возвышения. Бомбометы значительно повысили эффективность использования глубинных бомб, так как позволяли быстро накрыть залпом большой участок водной поверхности.

После Второй мировой войны на вооружение были приняты реактивные бомбометы, в качестве боеприпаса которых использовались реактивные глубинные бомбы (РБК).

Реактивная глубинная бомба имеет стабилизатор и твердотопливный реактивный двигатель. Подобные боеприпасы позволяют не только более точно и быстро производить бомбометание, но и имеют большую скорость погружения, благодаря ускорению, с которым бомба входит в воду.

В настоящее время глубинные бомбы применяются не только с кораблей, но и с самолетов и вертолетов. Сегодня на вооружении ВМС РФ стоит противолодочная авиабомба ПЛАБ-250–120. Вес этого боеприпаса составляет более 120 кг, из которых 60 кг приходится на взрывчатое вещество. Также современные глубинные бомбы могут доставляться до места использования с помощью ракет.

Из современных российских реактивных бомбометов можно отметить РБУ-6000 «Смерч-2» и РБУ-1000 «Смерч-3», а также комплекс «Удав-1М», который способен не только бороться с подлодками противника, но и уничтожать вражеские торпеды и подводных диверсантов.

Если у вас возникли вопросы - оставляйте их в комментариях под статьей. Мы или наши посетители с радостью ответим на них

Глубинная бомба

С самого начала первой мировой войны изобретатели искали такое средство, с помощью которого можно было бы наносить невидимому врагу удары под водой. Такое средство было найдено и сразу же стало грозным оружием против подводных лодок.

За все время войны им было уничтожено 36 подводных лодок, или почти 1/5 часть того количества, которое было потоплено.

Оружие это – глубинная бомба. И во время второй мировой войны эта бомба оказалась сильным оружием тех надводных и воздушных кораблей, которые охотились за подводными лодками. Она представляет собой снаряд цилиндрической формы. Вес заряда бомбы бывает разный и доходит до 270 килограммов.

Бомба называется глубинной потому, что она взрывается не при соприкосновении с водой или при всяком ударе, а на определенной, заранее заданной глубине. Боек ударника бомбы связан с таким же гидростатом, который применяется в различных устройствах мины и в торпеде. Гидростат гак «настраивается», что спускает боек на определенной глубине под водой. Но невозможно заранее знать, на какой глубине скрывается подводная лодка. Вот почему глубинные бомбы на корабле заблаговременно устанавливаются для действия на разной глубине. Определенное количество таких бомб с разной глубиной взрывания составляет целую серию. Бомбы и сбрасываются такими сериями; их удары поэтому могут настигнуть погрузившуюся подводную лодку на разных глубинах.

Но после погружения подводная лодка может уйти с того места, на котором заметили ее перископ. Правда, она еще не успела уйти далеко, но все же удары глубинных бомб, сброшенных в одном только месте, могут и не причинить ей вреда. Поэтому корабль сбрасывает свои бомбы на определенной площади с таким расчетом, чтобы незначительное перемещение подводной лодки не помогло ей избежать удара.

Вовсе не обязательно, чтобы глубинная бомба попала в подводную лодку или взорвалась тут же, около нее. Сила удара настолько велика, что заряд уничтожает подводную лодку на расстоянии до 10 метров, а на расстоянии до 20 метров взрыв причиняет ей серьезные повреждения, которые часто выводят из с!роя Важнейшие механизмы – подводной лодке приходиться всплывать.

Как же «стреляют» глубинными бомбами?

На корме корабля устраиваются своего рода направляющие лотки-сбрасыватели, Бомбы уложены в эти лотки и при сбрасывании падают в «след» корабля. Существуют еще и бомбометы-«пушки» для стрельбы глубинными бомбами. Их устанавливают по бортам в кормовой части корабля.

Теперь представим себе, что надводный корабль, вооруженный и кормовым сбрасывателем и бортовыми бомбометами, заметил погружающуюся подводную лодку. Он мчится к месту погружения, вот он Достиг его; тогда начинается сбрасывание бомб по ходу корабля и с обоях бортов. Корабле проносится, оставляя за собой большую площадь, усеянную бомбами. Взрывные волны распространяются по всей толще воды и образуют смертельно опасную вону, из которой подводной лодке очень трудно выбраться невредимой.

Успехи глубинной бомбы привели к тому, что в проектах новых судов-«охотников» это оружие начинает играть все более значительную роль.

В зарубежной печати появляются сведения о проектируемых новейших кораблях- охотниках, вооруженных дальнобойными бомбометами в башенных установках. Это своего рода пушки с дальномерами и прицельными приспособлениями; их стрельбой управляют из центрального поста управления огнем.

Такие бомбометы смогут поражать глубинными бомбами издалека замеченную и успевшую погрузиться подводную лодку.

Кроме того, с их помощью якобы можно создать взрывную завесу на пути торпед, выпущенных каким-либо кораблем, и заставить их преждевременно взорваться или отвернуть.

Как разбрасываются глубинные бомбы по площади.

Глубинные бомбы вылетели из бомбомета.

Изобретатели не прекращают поисков еще более совершенного оружия для поражения погрузившихся подводных лодок. Так например, в печати появились сведения о Проекте торпедной глубинной бомбы. Это обыкновенная торпеда, но ее зарядное отделение может служить и глубинной бомбой. Заметив подводную лодку на поверхности или ее перископ, корабль-охотник выпускает такую торпеду. Прибор расстояния в ней установлен на определенную дистанцию - до места подводной лодки. Если она останется в надводном положения или под перископом, торпеда ударится об ее корпус, взорвется и потопит ее. Если же подводная лодка успеет погрузиться, то в конце дистанции хода торпеды, как раз над нырнувшим противником, автоматически сработает механизм, отделяющий зарядное отделение. Оно превратится в обыкновенную глубинную бомбу и взорвется на заданной глубине.

Один из проектов новейшего охотника за подводными лодками, вооруженного прицельными дальнобойными бомбометами в башенных установках: 1 – Кормовой бомбосбрасыватель. 2 – Прицельные дальнобойные бомбометы в башнях 3 – Управление огнем. 4 – Мощные прожекторы. 5- Орудия калибра 76 миллиметров 6-Якорь. 7 -Дальномер в башне. 8-бомбомет. 9 – Механизмы вращения и обслуживания башни. 10 – Механизмы кормового бомбосбрасывателя. 11 – Башни бомбометов, 12 – Орудия корабля.

Из книги Линейный корабль автора Перля Зигмунд Наумович

Из книги Боевые корабли автора Перля Зигмунд Наумович

Глава III Винт, бомба и броня Пар и железо В последние десятилетия XVIII века на заводах и фабриках Европы произошли большие изменения. Были изобретены паровая и другие машины для металлургических, машиностроительных и текстильных заводов и фабрик. Машинное производство

Из книги 100 великих достижений в мире техники автора Зигуненко Станислав Николаевич

Бомба против пожара Еще один способ конверсии предлагают специалисты Государственного научно-производственного предприятия «Базальт». Одно из самых страшных изобретений нашего времени – вакуумную бомбу – они используют как эффективное средство тушения с воздуха

Из книги автора

Бомба, которая не убивает? Недавно английская газета «Дейли телеграф» сообщила, что в Великобритании завершается создание устройства, взрыв которого лишь временно выводит из строя людей, но губителен для электроники. Он порождает направленную электромагнитную волну

Выбор редакции
Вице-адмирал Лиланд Ловетт (командовал эскадрой, которая 7 ноября 1942 года произвела высадку англо-американских войск в Северной Африке)...

При диагностике различных урогенитальных патологий у мужчин берут особый анализ, позволяющий выявить наличие инфекции, которая могла...

Регистрация счет-фактуры на аванс необходима только в том случае, если предоплата контрагентом поступила на счет продаваемой организации,...

Кондиломы остроконечные являются не чем иным, как телесными выростами или бородавками, которые, как правило, образуются в зоне наружных...
Для проведения инвентаризации есть специальный документ - «Инвентаризация товаров на складе». С помощью данного документа вы можете...
Выписка банка в 1С 8.3 Бухгалтерия необходима для отражения списания и поступления денежных средств по безналичному расчету. Она отражает...
У птиц очень развита забота о потомстве, которая проявляется, кроме строительства гнезда и насиживании кладки, в выкармливании птенцов, в...
Страшные сказки. Истории, полные ужаса и жути Посвящается Дот, с благодарностью Введение Не пугайте детей В самом начале XIX...
Алёша Попович — фольклорный собирательный образ богатыря в русском былинном эпосе. Алёша Попович как младший входит третьим по значению...