Размагничивание корпуса корабля. Намагничивание корабля в магнитном поле земли. Магнитное поле корабля


Размагничивание корабля

искусственное изменение магнитного поля корабля с целью понижения вероятности его подрыва на магнитных и магнитно-индукционных минах. Р. к. достигается с помощью стационарных размагничивающих устройств (РУ), основным элементом которых являются специальные обмотки, монтируемые непосредственно на корабле и предназначенные для компенсации его магнитного поля. Корабли и суда, не имеющие РУ, проходят периодическое размагничивание на стационарных или подвижных станциях безобмоточного размагничивания, где после воздействия размагничивающего внешнего магнитного поля собственное магнитное поле корабля снижается до необходимого уровня.


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Смотреть что такое "Размагничивание корабля" в других словарях:

    Уменьшение напряженности магнитного поля корабля для снижения вероятности его подрыва на магнитных и индукционных минах. Различают два вида размагничивания корабля обмоточное (на корабле монтируют в различных плоскостях несколько кабельных… … Морской словарь

    Размагничивание корабля - уменьшение напряжённости магнитного поля корабля для снижения вероятности его подрыва на магнитных и индукционных минах. Различают два вида Р. к. обмоточное (внутри корпуса корабля монтируют кабельные обмотки, по которым пропускается постоянный… … Словарь военных терминов

    Намагниченность судового железа под действием магнитного поля Земли. Является причиной девиации магнитного компаса. На магнетизм корабля реагируют магнитные и индукционные взрыватели морских мин. Для снижения магнетизма корабля применяют… … Морской словарь

    Противоминная защита корабля - комплекс конструктивных мер и технических средств, снижающих степень поражения корабля минным оружием. Включает: конструктивную защиту корабля; технические средства для снижения интенсивности физических полей (уменьшение шумно сти,… … Словарь военных терминов

    Противоминная оборона - совокупность мероприятий по предохранению кораблей от подрыва на морских и речных минах. Основным средством П. о. служит траление мин в сочетании с рядом вспомогательных средств. Из них особое значение имеют: наблюдение, организуемое на… … Краткий словарь оперативно-тактических и общевоенных терминов

    ГОСТ 23612-79: Магнетизм судовой. Термины и определения - Терминология ГОСТ 23612 79: Магнетизм судовой. Термины и определения оригинал документа: 10. Девиация геомагнитного поля на судне Девиация Е. Deviation F. Déviation D. Deviation Отклонение элементов вектора магнитной индукции на судне от… … Словарь-справочник терминов нормативно-технической документации

И.Г. ЗАХАРОВ - доктор технических наук, профессор, контр-адмирал,
В.В. ЕМЕЛЬЯНОВ - кандидат технических наук, капитан 1 ранга,
В.П. ЩЕГОЛИХИН - доктор технических наук, капитан 1 ранга,
В.В. ЧУМАКОВ - доктор медицинских наук, профессор, полковник медицинской службы

К наиболее известным физическим полям кораблей относятся гидроакустическое, магнитное, гидродинамическое, электрическое, низкочастотное электромагнитное, поле кильватерного следа, проявляющиеся в основном в морской среде, а также тепловое, вторичное радиолокационное, оптико-локационное и другие поля, проявляющиеся, как правило, в пространстве над кораблем. Физические поля используются при срабатывании неконтактных взрывателей в минах и торпедах, а также для обнаружения подводных лодок, находящихся в подводном положении. Опыт Второй мировой войны показывает, что большая часть потопленных кораблей подорвалась на минах.

Совершенствование шумопеленгаторов и гидролокаторов, появление минного и торпедного оружия, реагирующего на шум корабля, с особой остротой поставили вопрос об уменьшении звукоизлучения кораблей и снижении величины гидролокационного отражения, что повышает их акустическую скрытность, защиту от поражения оружием и улучшает условия работы собственных гидроакустических средств.

Во время Великой Отечественной войны ученые институтов ВМФ, ЦНИИ им. академика А.Н. Крылова, специалисты проектных организаций и судоверфей искали пути уменьшения шума подводных лодок и тральщиков за счет установки виброактивных механизмов на амортизаторы и применения глушителей для дизельных двигателей (И.И. Клюкин, О.В. Петрова). Война выявила явную недостаточность и несовершенство существовавших в то время средств акустической защиты отечественных кораблей. Поэтому уже в первые послевоенные годы начали создаваться специальные лаборатории и научные коллективы, назначение которых определялось необходимостью уменьшения акустических параметров кораблей (М.Я. Минин, Ю.М. Сухаревский). Появились первые относительно малошумные гребные винты. Наиболее шумные механизмы устанавливались на амортизаторы, применялись резинометалические соединения.

Начало проектирования и строительства первых атомных подводных и быстроходных противолодочных кораблей, оснащенных гидроакустическими станциями, дало импульс развитию корабельной акустики. Изучение физической природы шумообразования корабля, разработка первых приближенных расчетных схем для оценки звукоизлучения корпуса корабля, его гребных винтов, создание более эффективных средств звуко- и виброизоляции и вибропоглощения, изучение природы и источников виброактивности корабельных механизмов и систем, разработка и создание приборов и методик для замеров и исследований шумов кораблей и вибраций их механизмов явились основными направлениями корабельной акустики. Ими занимались в ЦНИИ им. А.Н. Крылова, 1-м ЦНИИ МО, Акустическом институте АН СССР. Первые научные школы создавались под руководством Л.Я. Гутина, Я.Ф. Шарова, А.В. Римского-Корсакова, Б.Д. Тартаковского, Б.Н. Машарского, Н.Г. Беляковского, И.И. Клюкина. А.Д. Перника. В 1956-1958 гг. 1-м ЦНИИ МО и ЦНИИ им. академика А.Н. Крылова проведены первые специализированные натурные акустические испытания надводных кораблей с использованием измерительных гидроакустических судов. Результаты испытаний и исследований характеристик и источников гидроакустического поля кораблей позволили сформулировать обоснованные рекомендации по проектированию акустической защиты первых атомных подводных лодок и снижению акустических помех работе гидроакустических станций надводных кораблей. Одновременно шла подготовка научных кадров, велось обучение специалистов по акустической защите кораблей для проектных организаций, судоверфей и флотских подразделений.

С начала 60-х годов стали формироваться и реализовываться комплексные программы НИОКР, направленные на совершенствование акустических характеристик подводных лодок и надводных кораблей. Курирование этих программ осуществлялось Научным советом по комплексной программе "Гидрофизика" при Президиуме АН СССР (руководитель - президент АН СССР А.П. Александров). Непосредственное руководство выполнением этих программ осуществляли ведущие ученые и организаторы научных исследований - Я.Ф. Шаров, Б.А. Ткаченко, Г.А. Хорошев, Л.П. Седаков, А.В. Авринский, В.Н. Пархоменко, Э.Л. Мышинский, В.С. Иванов.

В последующие годы работами ЦНИИ им. академика А.Н. Крылова, 1-м ЦНИИ МО, институтов АН СССР, проектно-конструкторских организаций и заводов-судоверфей были достигнуты значительные успехи в решении задач снижения подводной шумности подводных лодок и надводных кораблей. За последние 30 лет уровни подводного шума отечественных подводных лодок уменьшились более чем на 40 дБ (в 100 раз).

Это стало возможным в результате многочисленных теоретических и экспериментальных исследований физической природы распространения вибрации по корпусным конструкциям кораблей и их звукоизлучения в воду. Была создана физико-математическая модель для подводной лодки и надводного корабля как сложного многоэлементного излучателя подводного шума, на базе которой не только выполняются прогнозные оценки ожидаемых уровней шумоизлучения корабля, но и разрабатываются рекомендации по архитектуре и конструкции корпуса и его элементов, по размещению механизмов и систем корабля. К решению проблемных вопросов теории вибрации и звукоизлучения корпусов кораблей и их конструкций привлекались ученые Ростовского государственного университета, Института проблем механики АН СССР, Института машиноведения АН СССР (И.И. Ворович, А.Л. Гольденвейзер, А.Я. Ционский, А.С. Юдин, Г.Н. Чернышев, А.З. Авербух, Г.В. Тарханов), которые внесли важный вклад в развитие представлений о виброакустике оболочечных конструкций, аппроксимирующих корпус подводной лодки. Для снижения вибровозбудимости и уменьшения звукоизлучения корпусных конструкций были созданы и применены на кораблях специальные вибропоглощающие звукоизолирующие и звукопоглощающие покрытия. Их применение обеспечило уменьшение шума внутри помещений корабля и улучшило условия жизни и работы экипажа. Нанесение покрытий снаружи корпуса уменьшило отражение от корпуса гидролокационных сигналов.

При разработке и создании покрытий был решен ряд физических и технических задач по рациональному подбору материалов покрытий и их конструкций, позволившему обеспечить наряду с требуемыми акустическими характеристиками покрытий их прочность и надежность.

Существенный прогресс достигнут в области создания малошумных гидравлических и воздушных систем. На основе теоретического обобщения многих экспериментов, проведенных на гидро- и аэродинамических стендах, были разработаны принципы создания малошумных дроссельно-регулирующих устройств и других механизмов (Я.А. Ким, И.В. Малоховский, В.И. Голованов, А.В. Авринский).

Работы по снижению вибрации и шума корабельных механизмов и систем касались, прежде всего, турбозубчатых агрегатов, насосов, вентиляторов, электромеханизмов и другого оборудования. Важные работы проводились по роторным системам, кривошипно-шатунным механизмам, подшипникам. Изучались электромагнитные источники шума и вибрации в электродвигателях, электромашинах и статических преобразователях. В этих работах, наряду со специалистами ЦНИИ им. академика А.Н. Крылова и 1-го ЦНИИ МО (К.И. Селиванов, А.П. Головнин, Х.А. Гуревич, Э.Л. Мышинский, С.Я. Новожилов, Е.Н. Афонин и др.), активное участие принимали ученые Института машиноведения АН СССР и инженеры машиностроительной отрасли (Р.М. Беляков, Ф.М. Диментберг, Э.Л. Позняк, И.Д. Ямпольский, Б.В. Покровский и другие).

На основании теоретического анализа и обработки большого количества экспериментальных данных были определены зависимости акустических характеристик основных типов механизмов от энергетических параметров и тем самым обеспечено проектирование оптимальной энергетической установки. Практически для каждого поколения подводных лодок и надводных кораблей разрабатывались средства виброизоляции: амортизаторы, гибкие рукава, патрубки, мягкие подвески трубопроводов и муфт. От поколения к поколению их виброизолирующая способность удваивалась. Разрабатывались специальные виброизолирующие фундаменты, двухкаскадные схемы виброизолирующих креплений. В итоге работ, проводившихся под руководством специалистов ЦНИИ им. академика А.Н. Крылова, 1-го ЦНИИ ВМФ (Г.Н. Белявский, Я.Ф. Шаров, В.И. Попков, Н.В. Капустин, К.Я. Мальцев, И.Л. Орем, В.Р. Попинов), отечественное судостроение располагает широким набором амортизирующих и виброизолирующих конструкций, способных обеспечить значительное снижение вибрации и шума. Из уникальных конструкций следует отметить пневматические и низкочастотные амортизаторы на нагрузку 0,5-100 т, гибкие рукава для трубопроводов с давлением рабочей среды до 10000 кПа и некоторые другие.

Хороший эффект получен от применения средств вибропоглощения в судовом энергетическом оборудовании, трубопроводах, рамных и фундаментальных конструкциях. Так, выполненные из составных балок (типа сэндвич) пространственные рамы для агрегатных сборок механизмов обеспечили снижение шума на величину до 15 дБ при полном сохранении несущей способности. Составные структуры с внутренними вязкоупругими слоями нашли применение в конструкциях трубопроводов, пиллерсов и гребных винтов. Специальные кожухи для механизмов, глушители для воздушных магистралей и трубопроводов систем забортной воды также способствовали снижению шума.

Системы активного подавления вибрации механизмов и шума были созданы коллективом ученых и специалистов ЦНИИ судовой электротехники под руководством А.В. Баркова и В.В. Малахова. В Институте машиностроения СССР (РАН) проведены исследования и разработки активных устройств для снижения вибрации механизмов и в системе движитель-вал-корпус (В.В. Яблонский, Ю.Е. Глазов, С.А. Тайгер).

Большой цикл исследований был выполнен учеными и специалистами ЦНИИ им. академика А.Н. Крылова и машиностроительных предприятий с целью создания компактных энергоустановок с высокой удельной энергонапряженностью, обладающей эффективной системой подавления акустической энергии на всех путях ее распространения - по корпусным конструкциям, по жидкой среде в трубопроводах и по окружающему воздушному пространству. Осуществлен поиск и найдены варианты рационального размещения виброактивных механизмов с учетом их взаимодействия, оптимального использования невиброактивных конструкций, исключения резонансных режимов агрегатированных сборок и многое другое. В этой связи необходимо отметить многолетние плодотворные работы В.И. Попкова и его научной школы.

Внедрение результатов этих исследований в блочные энергетические установки, созданные на Ленинградском Кировском заводе (главный конструктор - М.К. Блинов) и Калужском трубном заводе (главный конструктор - академик В.И. Кирюхин), позволило создать машины, обеспечивающие постройку малошумных подводных лодок.

Сформулированы принципы "равнопрочной" акустической защиты энергоустановок (ЭУ), при которой передача звуковой энергии по различным путям ее распространения оказывается приблизительно одинаковой. Огромная информация о виброакустическом состоянии механизмов, накопленная в период стендовых и натурных акустических испытаний механизмов и ЭУ, позволила предложить ряд методов контроля вибрации и шума, диагностики технического состояния механизмов.

Неравномерность поля скоростей в диске гребного винта, другие гидродинамические причины обусловливают появление нестационарных усилий на гребном винте, которые через валопровод и подшипники передаются на корпус корабля, вызывая его интенсивные колебания (и как следствие, ухудшая условия обитаемости на корабле), значительное звукоизлучение в воду на низких частотах.

Для решения проблемы снижения низкочастотного излучения были развернуты работы по виброизоляции гребного винта от корпуса за счет включения упругих элементов в систему связей винта с валом и корпусом, представляющей сложную научную и инженерную задачу. Под руководством С.Ф. Абрамовича, М.Д. Генкина, К.Н. Пахомова, Ю.Е. Глазова специалистами ЦНИИ им. академика А.Н. Крылова и проектных организаций найден ряд эффективных конструктивных решений этой задачи.

Параллельно с разработкой пассивных средств акустической защиты (виброизолирующие устройства, акустические покрытия и др.) проводились работы по исследованию возможностей применения активных методов гашения (компенсации) гидроакустического поля корабля. В этом направлении велись работы в Акустическом институте АН СССР (Б.Д. Тарковский, Г.С. Любашевский, А.И. Орлов), реализовались идеи М.Д. Малюжинца (работами руководили В.В. Тютекин, В.Н. Меркулов). В ЦНИИ им. академика А.Н. Крылова предложены и исследованы активно-пассивные устройства гашения шума в трубопроводах (В.Л. Маслов, Л.И. Соловейчик), а также системы компенсации корабельных помех работе гидроакустических средств.

Решение проблемы снижения корабельных помех работе гидроакустических средств потребовало проведения исследований: по распространению звука и вибрации от источников на корабле к местам расположения приборов гидролокации; по статическим характеристикам турбулентного пограничного слоя на обтекателе антенн ГАС и излучению звука конструкциями обтекателей ГАС под действием сил турбулентного пограничного слоя, а также по созданию обтекателей антенн ГАС, обладающих требуемыми помехозащитными свойствами, звукопрозрачностью, прочностью и устойчивостью. Необходимо было изучить дифракцию звуковых волн на телах произвольной формы.

Для проведения исследований был разработан комплекс специализированных экспериментальных установок, макетов и стендов. На этой экспериментальной базе, а также в натурных условиях велись работы, в результате которых удалось создать теорию образования корабельных акустических помех. На ее основе созданы методики расчетной оценки уровней этих помех и прочности обтекателей, а также разработаны рекомендации и мероприятия по снижению помех. На подводных лодках внедрены помехозащитные безнаборные конструкции обтекателей основных антенн ГАС, обеспечивающие не только снижение помех гидродинамического турбулентного происхождения, особенно проявляющихся на больших скоростях, но и удовлетворяющие требованиям по звукопрозрачности и прочности.

Решение задачи снижения помех на надводных кораблях шло по пути использования экранирующих устройств корпуса судна и разработок и внедрения помехозащитных экранов (коффердамов) различной формы в т.ч. и напряженных. Выполнение комплекса теоретических и экспериментальных исследований, внедрение в проекты кораблей новых типов обтекателей и других технических решений и средств позволило, как показали натурные испытания, обеспечить снижение собственных акустических помех на подводных лодках в 40 раз, а на надводных кораблях - в 20 раз.

Решение проблемы уменьшения подводного шума кораблей невозможно без исследований и измерений энергетических, спектральных, пространственных, статистических и других характеристик шумов и вибрации. В связи с этим ЦНИИ им. академика А.Н. Крылова и 1-й ЦНИИ МО провели цикл работ по созданию практических методик измерений и исследований по поиску источников шума кораблей, по разработке требований к соответствующим комплексам аппаратуры. В итоге этих работ, выполнявшихся при участии предприятий Госстандарта ВНИИМ им. Д.И. Менделеева, ВНИИ ФТРИ и др., измерительные суда и измерительные полигоны были оснащены современными приборами. На кораблях и заводских испытательных стендах размещены системы вибро- и шумоизмерений для контроля механизмов и агрегатов кораблей. Метрологическая база, включающая оригинальные методы и методики, а также средства измерений и исследований шумовых и виброакустических характеристик кораблей и их механизмов, созданы под научным руководством и при активном участии Б.Н. Машарского, Г.А. Сурина, Г.А. Розенберга, А.Е. Колесникова, Г.А. Чуновкина, В.А. Постникова, В.И. Попкова, А.Н. Новикова, А.К. Квашенкина, М.Я. Пекального, В.П. Щеголихина, В.И. Теверовского, В.А. Киршова, В.К. Маслова и других.

Были организованы и проведены расширенные испытания практически всех серий современных подводных лодок и надводных кораблей (Г.А. Матвеев, Г.А. Хорошев, В.С. Иванов, Э.С. Качанов, И.И. Гусев), определены источники акустических и электромагнитных полей, оценена эффективность использованных на них средств защиты и разработаны мероприятия по дальнейшему снижению уровня этих полей.

Работы по созданию систем магнитной защиты кораблей и методов их размагничивания были начаты в 1936 г. под руководством А.П. Александрова. В ходе Великой Отечественной войны силами ученых Академии наук и военно-морских инженеров в неимоверно короткие сроки были разработаны системы и методы магнитной защиты и произведено оборудование ими кораблей. В группу ученых входили: А.П. Александров, В.Р. Регель, П.Г. Степанов, А.Р. Регель, Ю.С. Лазуркин, Б.А. Гаев, Б.Е. Годзевич, И.В. Климов, М.В. Шадеев, В.М. Питерский, А.А. Светлаков, Б.А. Ткаченко и многие другие.

На флотах и флотилиях были созданы службы размагничивания кораблей, впоследствии преобразованные в службу защиты кораблей. После окончания войны работы по совершенствованию методов и средств магнитной защиты надводных кораблей и подводных лодок продолжались. Улучшались методы безобмоточного размагничивания, строились специальные суда размагничивания, создавались новые средства измерения и контрольно-измерительные станции, велась подготовка квалифицированных кадров.

Одним из важных направлений было совершенствование магнитной защиты кораблей противоминной обороны. Научное обоснование сформировано А.В. Романенко, Л.А. Цейтлиным, Н.С. Царевым. В результате разработана высокоэффективная система магнитной защиты, не однажды проверявшаяся в условиях боевого траления. Развитие средств магнитной защиты кораблей потребовало решения комплекса сложных технических проблем, в том числе создания Научно-исследовательского полигона ВМФ (1952 г.). В его становлении решающую роль сыграли офицеры: Л.С. Гуменюк, Б.А. Ткаченко, А.И. Карась, А.Ф. Барабанщиков, Г.А. Шевченко, А.В. Курленков, Я.И. Криворучко, А.В. Романенко, А.И. Игнатов, М.П. Гордяев, Н.Н. Демьяненко.

Полигон сыграл значительную роль в совершенствовании защиты кораблей по физическим полям. Он был оснащен новейшими образцами измерительной техники. В его состав входили уникальные сооружения и в их числе магнитный стенд, построенный в конце 50-х годов. Аналогичные стенды в США были построены спустя 15-20 лет.

Среди научно-технических проблем, решавшихся творческими коллективами ученых и инженеров страны, к наиболее важным относились: снижение магнитного поля кораблей, разработка систем автоматического управления токами в обмотках размагничивающих устройств, создание источников питания размагничивающих устройств, а также разработка аппаратуры для измерения магнитных полей кораблей. В процессе работы по этим направлениям сформировалась целая плеяда квалифицированных ученых. Без имен Е.П. Лапицкого, А.П. Латышева, С.Т. Гузеева, Л.А. Цейтлина, А.В. Романенко, И.С. Царева, Н.М. Хомякова, Э.П. Рамлау трудно представить становление теории магнитной защиты кораблей. Позже этот перечень дополнился такими именами, как В.В. Иванов, В.Т. Гузеев, А.Д. Ронинсов, А.В. Найденов, А.В. Максимов, Л.К. Дубинин, Н.А. Зуев, А.И. Игнатов, И.П. Краснов, А.Г. Шленов, Д.А. Гидаспов, Б.М. Кондратенко, Л.А. Прорвин, В.Я. Матисов, Ю.М. Логунов, Ю.Г. Брядов, Е.А. Сезонов, В.А. Быстров, В.Э. Петров, М.М. Приемский, Н.В. Ветерков, В.В. Мосягин.

В создании систем автоматического управления токами в обмотках размагничивающего устройства в функции магнитного поля принимали участие А.В. Скулябин, Ю.Г. Брядов, Е.А. Сезонов, О.Е. Мендельсон, А.В. Романенко, О.П. Рейнганд, З.Е. Оршанский, В.А. Могучий. Создание источников питания размагничивающих устройств и импульсных генераторов для судов размагничивания являлось самостоятельной проблемой. В ее решении участвовали большие коллективы НИИ судостроительной и электротехнической промышленности.

Повседневная работа службы защиты кораблей на флотах тесно связана с измерениями магнитного поля кораблей. Измерения проводятся с помощью специальных магнитомеров. Одним из первых магнитомеров, использовавшихся на флотах, был английский магнитомер "Пистоль". Измерения магнитных полей движущихся кораблей выполнялись с помощью петлевых датчиков, уложенных на грунте и подключенных к флюксметру. После второй мировой войны был создан первый отечественный магнитомер ПМ-2, главным конструктором которого был Г.И. Кавалеров. Затем появились серии корабельных магнитомеров, переносных и стационарных. В число их разработчиков входили С.А. Скородумов, Н.И. Яковлев, В.В. Орешников, И.В. Стариков, Р.В. Аристова, Н.М. Семенов, Ю.П. Обоишев, В.К. Жулев, а также коллектив инженеров под руководством Ю.В. Тарбеева. Таким образом, усилиями ученых, инженеров, рабочих были созданы научные основы и техническая база на флотах для постоянного функционирования службы защиты кораблей от неконтактного минно-торпедного оружия.

Новыми направлениями в области защиты кораблей по физическим полям, возникшими в 50-х годах, стали исследования низкочастотного электромагнитного и стационарного электрического полей корабля. Необходимость в этих исследованиях диктовалась тем, что такие физические поля могут использоваться как для контактного минно-торпедного оружия, так и для систем обнаружения подводных лодок. Основным информационным признаком корабля, на использовании которого построены различные активные системы наведения большинства противокорабельных ракет, считается заметность корабля в различных частотных диапазонах электромагнитного излучения, что и обусловило развитие средств снижения этой заметности.

Работы по снижению заметности надводных кораблей в радиодиапазоне были начаты в 60-е годы НИИ ВМФ и промышленности. Создавались специальные стенды, на которых в лабораторных условиях на моделях кораблей определялись параметры вторичного (отраженного) радиолокационного поля. У истоков создания стендов стояли такие ученые, как В.Д. Плахотников, Л.Н. Гриненко, Д.В. Шанников, В.О. Кобак, В.П. Пересада, Е.А. Штагер (впоследствии ведущие специалисты в области исследования радиолокационных характеристик кораблей).

Для исследования радиолокационных характеристик в натурных условиях созданы специальные измерительные комплексы. Были введены в эксплуатацию стационарные радиолокационные полигоны на Балтийском и Черном морях. Первый из них в заливе Хара-Лахт в Эстонии принадлежал 1-му ЦНИИ МО и располагал радиолокационным измерительным комплексам РИК-Б. На нем впервые исследованы параметры вторичного радиолокационного поля отечественных кораблей в натурных условиях. Выполнение этой работы поручалось Г.А. Печко и В.М. Горшкову. Полигон в Севастополе был дополнительно укомплектован несколькими специализированными радиолокационными станциями с высоким разрешением по двум координатам и трехчастотной разных диапазонов и назначений. Особая заслуга в его создании принадлежит Е.А. Штагеру. В связи с утратой измерительных комплексов в Эстонии и на Украине основная нагрузка в части измерения параметров вторичного радиолокационного поля кораблей ВМФ ныне легла на район г. Приморска Ленинградской области, куда в 1993 г. перебазировался полигон 1-го ЦНИИ МО.

Результаты измерений радиолокационных характеристик отечественных кораблей за период 60-90-х годов позволили создать атлас, в который вошло большинство кораблей и судов ВМФ. Было установлено, что на поверхности любого надводного корабля существуют области интенсивного локального отражения, которые вносят основной вклад в отраженное поле. Это обстоятельство, помимо разработки метода расчета средней эффективной поверхности рассеяния корабля, обусловило развитие разработки методов и средств радиолокационной защиты. Исследования, выполненные организациями ВМФ и промышленности, показали, что для уменьшения интенсивности отражения радиолокационных сигналов необходимо преобразовать сильноотражающие корабельные конструкции в малоотражающие путем придания корабельным конструкциям малоотражающих форм (архитектурные решения), а также использовать радиопоглощающие материалы.

Работы по созданию корабельных радиопоглощающих материалов были начаты в 50-е годы. В это время разработаны радиопоглощающие покрытия - "Тент", "Кольчуга", "Лист", "Щит". Однако первое поколение радиопоглощающих покрытий (РПП) не было внедрено в кораблестроение из-за больших массогабаритных характеристик, а также вследствие сложной технологии крепления их к защищаемым корабельным конструкциям. Для создания новых радиопоглощающих материалов привлечен более широкий круг организаций ВМФ, Академии наук, предприятий Минхимпрома, Миннефтехимпрома, Минцветмета, Минвузов и Минсудпрома. Большой вклад в эти исследования внесли такие ученые, как Ю.М. Патраков, А.П. Петренас, В.В. Кушелев, Ю.Д. Донков: они показали, что введение в стеклопластик полупроводящих углеродных тканей придает ему поглощающие свойства. В 1965 г. были получены первые образцы прочного радиопоглощающего углестеклопластика, получившего название "Крыло", из которого затем изготовлена надстройка разъездного катера. Применение этого материала позволило снизить отраженное поле судна в 5-10 раз. Так был создан первый практический радиопоглощающий конструкционный материал.

Для широкого внедрения радиопоглощающих средств на корабли необходимы покрытия с малым весом, малой толщины, прочные и стойкие к жестким морским условиям. Эти требования наложили свой отпечаток на характер и направление работ в этой области. В 1972-1974 гг. Ю.М. Патраковым, Р.И. Энглином, Н.Б. Бессоновым, Г.И. Бякиным были разработаны первые образцы тонкослойных поглотителей ("Лак", "Экран"). В 1976 г. первое покрытие "Лак" установили на одном из малых противолодочных кораблей. Результаты натурных испытаний показали, что покрытие "Лак" позволяет снизить отраженный сигнал в 5-10 раз.

Параллельно с РПП "Лак" в конце 70-х годов группой ученых под руководством А.Г. Алексеева осуществлена разработка и выполнены натурные испытания магнитоэлектрического покрытия ("Ферроэласт"). Его нанесли на большой противолодочный корабль. Эффективность этого покрытия примерно аналогична РПП "Лак". Дальнейшие работы по созданию третьего поколения корабельных покрытий связаны с поиском новых более эффективных наполнителей, усовершенствованием технологии нанесения ("Лак-5М"), расширением частотного диапазона и повышением поглощающих свойств ("Лак-1 ОМ"), снижением массогабаритных параметров ("Лакмус").

Работы по тепловой защите или снижению заметности надводных кораблей для тепловых (инфракрасных) систем были начаты с середины 50-х годов в 14-м НИИ ВМФ и 1-м ЦНИИ МО. На начальной стадии разработаны методики расчета теплового излучения кораблей, измерены распределения температур по поверхности корабля, предложен и испытан ряд средств тепловой защиты и ложных тепловых целей. С 1965 г. к работам подключился ЦНИИ им. академика А.Н. Крылова в качестве головной организации отрасли. У истоков развития этого направления стояли СЛ. Брискин, С.Ф. Баев. В 1974 г. созданы базовые испытательные подразделения для натурных измерений температурных полей кораблей в Севастополе, Калининграде, Северодвинске и Владивостоке. Систематические измерения, их анализ, методические разработки привели к существенному расширению номенклатуры применяемых средств тепловой защиты и к снижению уровня теплового излучения кораблей до значений, соответствующих лучшим зарубежным кораблям. Этому значительно способствовали натурные исследования тепловых полей на полигоне 1-го ЦНИИ МО на Балтийском и Черном морях, на базе ЧВМУ им. П.С. Нахимова, проведенные учеными С.П. Сазоновым, В.И. Лопиным, В.Ф. Барабанщиковым, К.В. Тюфяевым.

В середине 70-х годов в ЦНИИ им. академика А.Н. Крылова создан теплотехнический стенд для исследования процессов теплообмена в корабельных дымовых трубах, разработаны методики расчета температурных полей корпуса и поверхности дымовых труб кораблей, а также методики измерений температур в натурных условиях.

С конца 80-х годов Минсудпромом и ВМФ совместно с другими отраслями осуществляется переход к непосредственным измерениям параметров тепловых полей надводных кораблей. Разрабатываются методики сдаточных испытаний кораблей по тепловому полю, создается контрольно-измерительная и исследовательская аппаратура, разрабатываются методы математического моделирования теплового поля (теплового портрета) корабля и оценки его защищенности на стадии технического проектирования. Определяются дальнейшие возможности снижения теплового поля кораблей. Большой вклад в эту работу внесли И.Г. Утянский, П.А. Епифанов.

Работы по оптиколокационной защите, то есть по снижению заметности надводных кораблей для лазернолокационных систем, были начаты в середине 70-х годов НИИ ВМФ и Минсудпрома с последующим привлечением организаций Академии наук, Минхимпрома, Миноборонпрома и других ведомств. Неоценимый вклад в разработку теоретической модели рассеяния лазерного излучения морскими объектами, а также методики расчета их защищенности внесли М.Л. Варшавчик и Б.Б. Семевский.

В 80-х годах была создана аппаратура для исследования оптико-локационных характеристик морских объектов в лабораторных и натурных условиях. Лабораторный стенд укомплектован аппаратурой, измеряющей коэффициенты отражения и яркости корабельных материалов как чистых, так и с поверхностной пленкой, например водной, а также материалов, расположенных в воде.

Для натурных измерений оптико-локационных характеристик кораблей и поверхности моря были введены в эксплуатацию два береговых лазерных измерительных комплекса на Черном (на базе Севастопольского ВВМУ) и Балтийском (на полигоне 1-го ЦНИИ МО) морях. В создании этих комплексов и исследований оптико-локационных характеристик кораблей принимали участие Ю.А. Солевон и Е.Г. Лебедько.

Проблема борьбы с гидродинамическими минами особенно остро встала перед отечественным ВМФ в 1945-1946 гг. во время операции по освобождению Северной Кореи. Ее порты были заминированы с воздуха американцами перед вступлением СССР в войну с Японией. В ходе высадки десантов, при обеспечении боевых действий войск и продолжавшегося более года (в том числе в послевоенное время) траления, флот понес ощутимые потери. Требовалось решить ряд научно-исследовательских проблем.

Учеными Г.В. Логвиновичем, Л.Н. Сретенским и В.В. Шулейкиным были разработаны основы теории гидродинамического поля. Ее использовали для оценок придонных гидродинамических давлений под кораблями, создания отечественных образцов измерительной аппаратуры и взрывателей мин, а также для разработки предложений по тралению этих мин и защиты от них кораблей и судов. Была создана стационарная экспериментальная база, разработаны методики измерений и проведены систематические измерения гидродинамического поля основных кораблей и судов ВМФ и дана оценка эффективности некоторых способов "гидродинамической" защиты кораблей (1-й ЦНИИ МО, руководитель Н.К. Зайцев). Особое внимание уделено оценке допустимых уровней гидродинамичекого поля. С этой целью на временных стендах в районах некоторых баз флота были проведены замеры параметров фонового поля. Организацией временных стендов, проведением измерений, обработкой и анализом результатов руководил Б.Н. Седых.

Специалистами 1-го ЦНИИ МО были разработаны теоретические основы комплексного волнового метода гидродинамической защиты кораблей. Основные положения этого метода подтверждены экспериментально на стационарном гидродинамическом полигоне. По результатам этих исследований впервые в мировой практике создан принципиально новый тип корабля противоминной обороны: опытный быстроходный, тральщик - волновой охранитель, проекта 1256. В разработке метода, проектировании и опытной эксплуатации этих кораблей активное участие приняли специалисты 1-го ЦНИИ В.С. Воронцов, М.М. Демыкин, О.К. Коробков, А.Н. Муратов, В.И. Салажов, Б.Н. Седых, Н.А. Цибульский; НИИП 1-го ЦНИИ МО - В.А. Дмитриев, Н.Ф. Корольков, И.В. Терехов; Западного ПКБ - М.М. Корзенева, В.И. Немудов; ЦНИИ им. академика А.Н. Крылова - К.В. Александров, А.И. Смородин. Результаты опытной эксплуатации подтвердили эффективность волнового метода и позволили наметить пути совершенствования кораблей противоминной обороны нового типа.

Наряду с решением задач гидродинамической защиты проводились исследования проблемы скрытности подводных лодок от средств обнаружения по гидрофизическим полям в кильватерном следе и на свободной поверхности. В ходе этих исследований впервые в стране созданы аппаратурные комплексы и проведены надежные измерения параметров кильватерного следа подводной лодки и фона. Результаты исследований используются для выработки мероприятий по обеспечению скрытности подводных лодок.

Военные моряки смогут одним нажатием кнопки менять индивидуальные электромагнитные портреты кораблей, по которым наводятся современные торпеды и донные мины. Эту возможность им обеспечат суперконденсаторы - устройства, представляющие собой промежуточное звено между аккумуляторными батареями и конденсаторами. Они способны мгновенно накапливать электрический ток и так же быстро его расходовать. Экипажи смогут самостоятельно проводить размагничивание корабля в море в случае опасности и тем самым вводить в заблуждение противника.

Как сообщили «Известиям» в главкомате ВМФ, в России налажено серийное производство суперконденсаторов, которые будут применяться для быстрого размагничивания боевых кораблей, а также для искажения и маскировки их электромагнитного портрета. Новейший комплекс размагничивания уже прошел испытания на большом десантном корабле (БДК) «Иван Грен».

Стандартные накопители энергии, применяемые в ВМФ, имеют высокие удельные мощностные, но низкие удельные энергетические параметры. Системы размагничивания на их основе имеют большую массу, поэтому устанавливаются лишь на специальных судах размагничивания. В отличие от накопителей предыдущего поколения суперконденсаторы - компактные устройства размером с обычный автомобильный аккумулятор, но с их помощью процесс размагничивания можно сделать непрерывным, интегрировав устройство в состав бортового оборудования.

Суперконденсаторы для ВМФ разработаны компанией ТЭЭМП. Изделия имеют удельную мощность в 100 кВт/кг и могут работать даже при экстремальных температурах. Суперконденсатор обладает миллионным числом циклов заряд–разряд, что позволяет интегрировать его в состав любого бортового оборудования автомобиля, самолета или корабля.

Эксперт в области военно-морских вооружений Александр Мозговой рассказал «Известиям», что стандартные процедуры размагничивания корабля долгие и утомительные. Сейчас их проводят исключительно на территории военно-морских баз.

У корабля есть не только свой уникальный акустический портрет, но и электромагнитный. Существуют магнитные мины, торпеды и даже ракеты с магнитными головками наведения, - пояснил эксперт. - Размагничивание необходимо, но это большая проблема. Помнится, на БДК «Иван Грен» пришлось из-за этого даже всю проводку менять.

По словам эксперта, новые технологии сильно упрощают процесс размагничивания, поскольку всё делается одним нажатием на кнопку. Морякам будет меньше работы, а процесс подготовки к выходу на боевую службу значительно ускорится. Такая система также постоянно контролирует состояние электромагнитного поля корабля во время плавания.

Американцы уже установили похожую систему на свои новейшие эсминцы типа «Зумвальт», - отметил Александр Мозговой.

Размагничивание корабля - обязательная процедура перед каждым выходом в море. Она включает в себя обмотку корпуса электрическим кабелем. По нему в течение нескольких суток подается ток, генерирующийся через электролитические конденсаторы, которые выдают переменные магнитные импульсы. Они снимают собственное электромагнитное поле корабля. Тем самым улучшается работа навигационных комплексов, а заодно повышается защищенность корабля от высокоточных систем оружия.

ПОДРОБНЕЕ ПО ТЕМЕ

Александр Сергеевич Суворов

О службе на флоте. Легендарный БПК «Свирепый».

Сводка погоды: Калининград среда 09 августа 1972, дневная температура: мин.: 14.8°C тепла, средняя: 21.0°C тепла, макс.: 28.7°C тепла, без осадков; четверг 10 августа 1972, дневная температура: мин.: 13.8°C тепла, средняя: 19.5°C тепла, макс.: 25.2°C тепла, без осадков; пятница 11 августа 1972, дневная температура: мин.: 16.4°C тепла, средняя: 20.7°C тепла, макс.: 25.7°C тепла, без осадков.

Этап швартовных испытаний БПК "Свирепый" завершился 09 августа 1972 года, когда нас отбуксировали на рейд СБР (стенд безобмоточного размагничивания) Калининградского ПССЗ "Янтарь" (это совсем рядом от места стоянки БПК "Свирепый", "справа за углом" заводской достроечной стенки, напротив нефтеналивной базы на том берегу морского канала - автор).

Размагничивание корабля - это процесс искусственного уменьшения его магнитного поля. Магнитное поле корабля - это физическое поле, то есть область пространства, прилегающая к корпусу корабля, в котором проявляются физические свойства корабля как материального объекта. Основные виды физических полей корабля: гравитационное, акустическое, тепловое (инфракрасное), гидродинамическое, электромагнитное, магнитное и электрическое поле корабля. Физические поля корабля взаимодействуют с соответствующим физическим полем Мирового океана и прилегающего воздушного пространства, поэтому оставляют след и могут быть обнаружены на расстоянии чуткими приборами.

Размагничивание производят с помощью обмоток контуров, питаемых током, и называют электромагнитной обработкой (ЭМО) корабля, при этом создаётся определённым образом магнитное поле, обратное по знаку магнитному полю корабля. Зависимость направления магнитного поля, то есть положения его полюсов от направления тока определяется известным правилом "буравчика". Размагничивание производится двумя различными методами – безобмоточным и обмоточным, но эти названия условные, так как размагничивание кораблей как одним, так и другим методом выполняют с помощью обмоток, питаемых током. Правда, в первом случае, обмотки накладывают на корпус судна временно, лишь на период размагничивания, или же вообще располагают вне судна, а по второму способу размагничивания обмотки устанавливают стационарно в корпусе корабля при его изготовлении и включают их на время следования по опасным районам.

Безобмоточное размагничивание (БР) осуществляется путём воздействия на корабль временно создаваемых магнитных полей двумя способами: с помощью временно накладываемых на корабль электрических обмоток и с помощью контуров, обтекаемых током, уложенных на грунте, на дне специальных акваторий - полигонов БР. При безобмоточном размагничивании (БР) корпус корабля подвергается воздействию затухающего переменного и постоянного магнитных полей, либо кратковременному воздействию только постоянного магнитного поля.

Когда изготавливали БПК "Свирепый", то его металлический (стальной) корпус неизбежно намагничивался, приобретал свои собственные физические поля, причём, в вертикальном, продольном и поперечном направлении, поэтому и размагничивать его нужно в этих же направлениях. При продольном размагничивании весь корпус корабля параллельно ватерлинии окружается кабелем, по которому пропускается ток такой величины, чтобы созданное электромагнитное поле обратного знака превышало собственное магнитное поле корпуса корабля в 2-3 раза. Через несколько секунд ток в обмотке выключается и происходит «опрокидывание» магнитного поля корабля. После этого проводится "операция компенсации", то есть опять в обмотку включается ток, величина и направление которого выбираются так, чтобы после выключения его магнитное поле корабля возможно больше приближалось к нулю. Таким образом, магнитное поле корабля не будет воздействовать на детонаторы вражеских магнитных мин и магнитных торпед...

Для создания как постоянного, так и переменного магнитных полей на корабль накладываются временно один или несколько витков кабелей, подключаемых к источникам питания специальных судов размагничивания. При продольном размагничивании корабль по всей длине обматывается несколькими витками кабелей, как катушка, и корабль оказывается заключенным внутри огромного соленоида. При подачи тока в эту обмотку-селеноид возникает объёмное магнитное поле, действующее по оси соленоида, которое размагничивает корабль. При поперечном размагничивании на корабль накладываются в вертикальной плоскости два последовательно соединенных витка кабелей по бортам. В результате по всем направлениям добиваются нулевых значений измерений магнитного поля корабля.

Заводить и обматывать корабль вдоль и вокруг корпуса тяжелыми многожильными медными кабелями в толстой изоляции - это очень тяжёлый труд, на который уходит много сил и времени, но это крайне необходимо, так как обеспечивает безопасность кораблю и точность навигации - определения местоположения корабля в окружающем пространстве Земли. Поэтому одновременно с обмоткой корабля кабелем осуществляется безобмоточное размагничивание на специальной станции, на которой обмотки (кабель) уложены определённым образом на грунте акватории завода-изготовителя корабля.

Контуры кабелей СБР (станции безобмоточного размагничивания), уложенные на грунте, имеют форму петли. Поэтому такие станции ещё называют "петлевые станции безобмоточного размагничивания" (ПСБР). Акватория ПСБР ограждается буями или вехами и здесь имеются бочки для швартовки кораблей и судов. Через первый контур пропускают постоянный ток, а через второй - переменный ток частотой 1 Гц. Переменное магнитное поле устраняет все необратимые явления, возникающие при намагничивании в постоянном магнитном поле контура постоянного тока. Размагничивания на ПСБР осуществляется путём пропускания соответствующих токов по контурам (донным кабелям) в тот момент, когда корабль стоит над ними. Управление режимом тока и снятие показаний магнитометрической аппаратуры осуществляется дистанционно с берегового пульта.

Данный вид размагничивания БПК "Свирепый" получит в декабре 1972 года в уникальном месте - на I Полигоне ВМФ СССР в заливе Хара-Лахт (посёлке Суурпеа Эстонской ССР) на уникальных стендах:
- ИК-2М для магнитной обработки кораблей;
- база «Ока» - подъемно-опускное устройство для измерения гидроакустического поля;
- стенд «Пилон» - 28-метровая ферма, размещенная под водой, с установленными на ней датчиками гидродинамического давления и датчиками, определяющими гидрологию моря;
- глубоководный гидроакустический стенд, удаленный от основной акватории полигона на 80 км и т. д.

В четверг 10 августа 1972 года экипажу БПК "Свирепый" предложили сложить в коробки все свои наручные часы, мы, штурманцы БЧ-1, сняли все корабельные часы со всех переборок во всех помещениях и всё это унесли под охраной на берег. Перед этим, в среду, воспользовавшись хорошей ясной погодой, корабль был полностью обмотан кабелями для размагничивания, и особо храбрые матросы остались на корабле "загорать в сильном магнитном поле", чтобы получить либо "заряд сексуальной бодрости", либо "сексуальное успокоение". Процесс размагничивания БПК "Свирепый" шёл по принципу " гистерезисного или полугистерезисного перемагничивания" и эти слова действовали на моряков завораживающе, магически, магнетически. Некоторые утверждали, что ощутили прилив сил и "мужской энергии".

На самом деле электромагнитное поле безобмоточного размагничивания действует только на корпус корабля, при этом не компенсируются курсовые и широтные изменения поля корабля, поэтому возникает необходимость периодически повторять магнитную обработку ввиду недостаточной стабильности результирующего поля и после каждого размагничивания необходимо производить определение и устранение девиации (погрешности) магнитных компасов. Так что нам, штурманам, забот и хлопот 09-10 августа 1972 года хватало...

Кроме этого лично мне пришлось участвовать в так называемом "обмоточном размагничивании", то есть в производстве компенсации магнитных полей корабля полями от стационарных обмоток, питаемых током от специальных источников. Совокупность системы обмоток, источников питания, а также аппаратуры управления и контроля составляет размагничивающее устройство (РУ) корабля. РУ создаёт магнитное поле в любой момент времени как "зеркальное отображение" собственного магнитного поля корабля, при этом в каждой точке под кораблем создаваемое магнитное поле равно полю корабля по величине, но противоположно по знаку. Таким образом, результирующее магнитное поле имеет почти нулевые значения (корабль становится почти "невидимым" для магнитных мин - автор). Кстати впервые РУ разработаны ещё во время Великой Отечественной войны 1941-1945 годов группой сотрудников ЛФТИ АН СССР во главе с академиком А. П. Александровым (И. В. Курчатов, Л. Р. Степанов К. К. Щербо и др.). Размагничивающее устройство (РУ) позволяет компенсировать магнитное поле корабля с учетом курсовых и широтных изменений.

Обмотки РУ установлены внутри корабля в продольном, поперечном и вертикальном направлениях, а направление тока в обмотках подбирают так, чтобы магнитное поле было противоположно собственному полю корабля полю в этих направлениях. Вот эти-то обмотки, спрятанные в специальных кожухах внутри помещений в носу и в корме, по расположению шпангоутов и по бортам (батоксовые постоянные обмотки) я и проверял. Для компенсации разнонаправленного магнитного поля достаточно задать в обмотках определенный и одинаковый режим тока, но сложнее компенсировать индуктивные составляющие намагничивания. Для компенсации этих составляющих магнитного поля корабля в РУ (размагничивающее устройство) входят регулируемые обмотки: широтная, курсовые шпангоутные обмотки и батоксовые курсовые обмотки.

РУ обмоточного размагничивания требует много энергии, стоит больших средств и усилий для создания, дефицитных материалов, но обеспечивает большую степень защиты кораблей от неконтактного магнитного оружия и большую скрытность корабля в физических полях Мирового океана.

Таким образом, - рассказывал я ребятам во время посещения боевых постов и внутренних помещений для ревизии обмоток корабельного РУ (размагничивающего устройства), - за этими металлическими кожухами располагаются простые молчаливые толстые медные кабели, защищающие нас от магнитных мин и торпед, делающие нас невидимыми в магнитных полях, дающие возможность точно определять наше местоположение, местоположение (координаты) целей, а значит точнее стрелять, поразить врага и остаться живыми. Берегите эти защитные кожухи и берегите аппаратуру РУ, потому что они здесь не просто так, для красоты или помехи, а для самозащиты корабля, то есть нас всех.

Я честно "не травил военно-морскую байку о РУ" (размагничивающем устройстве), я говорил правду. Практически все матросы и старшины, годки, подгодки и молодые матросы с уважением и со вниманием смотрели на то, что я делал и слушали, что я говорил им обычным усталым и деловым тоном. Все отнеслись к размагничиванию нашего корабля с пониманием, вот почему участие нашего экипажа в укладке и обмотке корпуса корабля тяжеленными и маркими кабелями все мы восприняли, как аврал, как состязание, как своеобразный героизм. В этой авральной работе участвовали буквально все: офицеры, мичманы, годки, подгодки, молодые, прикомандированные и вновь прибывшие "салаги". Это было наше последнее "дело" в Программе швартовных испытаний перед получением первого в истории БПК "Свирепый" Военно-Морского флага, открывающего нам путь в море...

Ещё в середине июля 1972 года специальная комиссия представителей всех сдатчиков, военпредов и заказчиков от ВМФ определилась с датой выхода на заводские ходовые испытания БПК «Свирепый» - 12-13 августа 1972 года, на этот срок была назначена дата подъёма на корабле Военно-Морского флага.

В период с 09-11.08.1972 года БПК «Свирепый» проходил первое безобмоточное размагничивание на заводском рейде СБР, которое обеспечивало судно размагничивания Балтийского флота (возможно, СР-570 – автор). Под руководством опытных работников и матросов специального судна СР-570, мы разматывали с огромных катушек специальные тяжёлые кабель-тросы в чёрной липкой и маркой резиновой изоляции, цепляли их, наращивая длину, и заводили под корпусом нашего корабля, поднимая эти кабель-тросы на надстройки и даже на нашу фок-мачту и реи. В результате, корпус корабля оказался полностью обмотан кабель-тросами и превратился в сердечник электромагнита - селеноида.

На БПК «Свирепом» ещё не совсем закончились разные работы по доводке машин и механизмов, установка новых приборов, поэтому на корабле присутствовали многочисленные специалисты разных заводов, приехали из Ленинграда конструкторы и проектанты корабля, инженеры-наладчики и учёные из военных институтов. Все были в хорошем праздничном настроении и восприняли время, предназначенное для размагничивания корабля (в течение нескольких дней), как своеобразный «отпуск». Матросы экипажа БПК «Свирепый» тоже, невзирая на невидимые магнитные поля, с удовольствием загорали на «крыше» ГКП и ходовой рубки во время проведения работ по размагничиванию, что и подтверждает фотоиллюстрация из ДМБовского альбома радиотелеграфиста Казённова Юрия Васильевича, период его службы 16.11.1970 - 11.1973. На переднем плане снимка Червяков Александр Николаевич, период службы 19.11.1970 - 11.1973, за ним с чапаевскими усами командир отделения механиков БП ЗАС Морозов Николай Николаевич, период службы 19.11.1970 - 11.1973, а за ним возвышается радиотелеграфист Аносов Борис Алексеевич, период службы 16.11.1970-11.1973 (все из БЧ-4). По бокам от ребят видны двойные кабель-тросы для размагничивания.

Обмоточное размагничивание БПК «Свирепый» на заводском стенде СБР с помощью специального судна, возможно, СР-570, было последним событием перед первым торжественным подъёмом Военно-Морского флага ВМФ СССР, потому что 10 августа 1972 года Командующий Балтийским флотом, адмирал В.В. Михайлин издал приказ №0432 о зачислении новостроящегося БПК «Свирепый» в списки боевых надводных кораблей Дважды Краснознамённого Балтийского флота.

Что значило для нас, экипажа БПК «Свирепый», издание командующим Балтийским флотом такого приказа и поднятие Военно-морского флага? Первое, - это, конечно, гордость за то, что мы досрочно справились с большими задачами, приняли и первично освоили корабль, подготовились к заводским ходовым испытаниям. Второе, - это повышение денежного содержания и норм питания с «сухопутных» (общевойсковых норм), до «морских» (флотских). Третье, - начало настоящих морских испытаний и приключений, потому что наш корабль должен был впервые дать ход, пройти узостями по калининградскому Морскому каналу из акватории родного Калининградского Прибалтийского судостроительного завода «Янтарь» в Балтийскую военно-морскую базу Балтийск и встать там к причальной стенке – на своё законное место.

Фотоиллюстрация из ДМБовского альбома Юрия Казённова: 10 августа 1972 года. Калининград. Калининградский Прибалтийский судостроительный завод "Янтарь". Заводской рейд СБР, где в период с 09 по 11 августа 1972 года БПК «Свирепый» проходил безобмоточное размагничивание. На переднем плане снимка радиотелеграфист Червяков Александр Николаевич, период службы 19.11.1970-11.1973, за ним с чапаевскими усами командир отделения механиков БП ЗАС Морозов Николай Николаевич, период службы 19.11.1970 - 11.1973, а за ним возвышается радиотелеграфист Аносов Борис Алексеевич, период службы 16.11.1970 - 11.1973 (все из БЧ-4). По бокам от ребят видны двойные кабель-тросы обмотки размагничивания. Сверху на фоне берега виден корабельный измеритель ветра (КИВ) – моё (автора) заведование как рулевого БЧ-1.
В новелле использованы данные из статьи авторов Зингер М.А., Захаров И.В. Применение инновационных технологий в военном кораблестроении // Актуальные вопросы технических наук: материалы IV Междунар. науч. конф. (г. Краснодар, февраль 2017 г.). - Краснодар: Новация, 2017. - С. 13-17.

Магнитометрические приборы

Для измерения характеристик: магнитного поля и магнитных свойств физических объектов применяются магнитометры.

В зависимости от методов измерений магнитометры подразделяются на:

· Магнитостатические;

· Электромагнитные;

· Индукционные;

· Магнитодинамические;

· Ядерные прецессионные.

Магнитное поле воздействует на все физические тела, находящиеся в его зоне. Эти воздействия неодинаковы: одни из тел намагничиваются, другие – нет; у одних намагничивание устойчиво, а у других – устойчивости не наблюдается.

Магнитные свойства материалов различают по их магнитной восприимчивости . В соответствии с их величинами все материалы подразделяют на три группы:

· диамагнитные,

· парамагнитные,

· ферромагнитные.

Диамагнитные материалы незначительно ослабляют намагничивающее поле .

К ним, например, относятся; вода, медь, висмут. Ввиду малости считают, что , т.е. диамагнетики ведут себя по отношению к магнитному полю как вакуум.

Парамагнитные материалы незначительно усиливают намагничивающее поле .

Это такие материалы как: воздух, алюминий, титан.

Ферромагнитные материалы; значительно усиливают намагничивающее поле.

Приведем некоторые из них (максимальные значения):

· мягкое железо ;

· углеродистое железо ;

· чистое отожженное в водороде железо ;

· конструкционная сталь .

Корабль постоянно находится в магнитном попе Земли и его взаимодействие с ним определяет понятие магнитного поля корабля.

На постройку корабля расходуется значительное количество конструкционной стали.

Зависимость магнитного состояния тела от напряженности намагничивающего поля: для ферромагнитных материалов определяется экспериментальным способом и называется кривой намагничивания. Наиболее полную характеристику магнитных свойств ферромагнетиков дает гистерезисная (гистерезис – отставание) кривая (рис. 4). Она строится в координатных осях намагниченности и напряженности намагничивающего поля . Основными участками гистерезисной кривой являются: – первоначальное намагничивание материала; – перемагничивание; – перемагничивание в первоначальном направлении.

Характерные точки диаграммы: точка – пересечение нисходящей ветви петли с координатной осью. В этой точке при сталь обладает остаточной намагниченностью , характеризующей степень магнитной твердости материала.

Точка – пересечение нисходящей ветви с осью показывает величину напряженности намагничивающего поля обратного знака, которую необходимо приложить для размагничивания материала. Величина называется коэрцитивной силой. При движении по восходящей ветви петли будем иметь подобные точки с противоположным знаком.


При намагничивании до ненасыщения гистерезисная петля суживается,

Корабль в магнитном поле Земли подвергается постоянному и индуктивному намагничиванию.

Намагничивание ферромагнитных масс корабля в магнитном поле Земли соответствует начальному участку кривой намагничивания (рис. 5). Намагниченность можно разделить на постоянную и индуктивную составляющие.

В зависимости от места (широты) постройки, курса на стапеле и технологии (механические, электромагнитные и тепловые воздействия) корабль приобретает намагничивание (рис. 6), зависящее, как говорят, от магнитной предыстории.

Если корабль длительное время стоит одним курсом (в доке, при постройке и т.д.), то он намагничивается, и некоторая часть его магнитного момента остается независимо от его дальнейшего положения.

В общем случае вектор намагничивания корабля направлен произвольно относительно прямоугольной системы координат, связанной с кораблем.

Обычно используется левая система координатных осей: ось направлена вертикально к центру Земли, ось – горизонтально вдоль корабля в нос, ось – горизонтально в сторону правого борта.

Корабль является сложным геометрическим телом и намагничивается по-разному в разных плоскостях. Поэтому для анализа магнитного поля корабля вектор его намагниченности обычно представляют в виде суммы трех составляющих вдоль указанных координатных осей:

Считают, что каждая из этих составляющих создает в окружающем пространстве свое магнитное поле, т.е. магнитное поле корабля представляют в виде суммы трех полей: поле продольного намагничивания, поле поперечного намагничивания и поле вертикального намагничивания.

Таким образом, вектор напряженности МПК представляется суммой напряженности каждого из этих полей:

где – результирующий вектор напряженности поля вертикального намагничивания; – результирующий вектор напряженности поля продольного намагничивания; – результирующий вектор напряженности поля поперечного намагничивания.

Для тактических нужд анализа МПК вектор напряженности каждого из полей намагничивания корабля представляют тремя составляющими в системе координат, связанной с кораблем:

Для поля вертикального намагничивания эти составляющие, например, называются: – продольная составляющая поля вертикального намагничивания корабля; – поперечная составляющая поля вертикального намагничивания; – вертикальная составляющая поля вертикального намагничивания.

На рис. 7 представлены кривые составляющих поля вертикального намагничивания корабля, полученные в результате измерений на глубине под кораблем при перемещении датчика (наблюдателя) вдоль диаметральной плоскости (рис. 7,а) и вдоль плоскости мидель-шпангоута (рис.7,6).

С учетом постоянных и индуктивных составляющих напряженности МПК получаем для поля вертикального намагничивания 6 составляющих:

где , – знаки индуктивного и постоянного намагничивания соответственно; – знак поля вертикального намагничивания. Совместив мысленно на рис. 7 точки , получим объёмное распределение поля.

Выбор редакции
Арабы и их стремительные завоевания. Государство у арабов возникло вместе с исламом. Основателем того и другого считается пророк...

Беда в Иерусалимском королевстве. В 1174 г. на иерусалимский престол взошел 13-летний Бодуэн IV. Регентом, т.е. фактическим правителем...

Цели: 1. Развитие коммуникативных навыков. 2. Формирование основ позитивного общения детей между собой и со взрослыми. 3. Развитие...

Один из трех основных богатырей русского эпоса, младший по возрасту.Алеша Попович и Тугарин Змеевич Художник Н. КочергинСохранившиеся в...
Классный час во 2 классе Тема: Учимся любить Цели: - дать представления о формах выражения чувства любви Развивать стремление проявлять...
Военно Морские Силы Великобритании (Англии) Великобритания, страна вписавшая свое имя в историю, благодаря своему Королевскому Флоту....
Как и куда подавать налоговую декларацию 3-НДФЛ? В какую налоговую инспекцию подавать декларацию? Декларация 3-НДФЛ всегда подается в...
Регистрируясь как индивидуальный предприниматель, многие думают, что бухгалтерия для ИП не обязательна. Так и было, пока не внесли...
Можно ли полностью сразу получить всю сумму имущественного вычета? Помогите пожалуйста разобраться! Я купила квартиру в прошлом году, и...