Как производится мрт. МРТ – что это за процедура, показания, противопоказания. Что представляет из себя МРТ


Создано: 28 октября 2015 Обновлено: 28 октября 2015 Просмотров: 10761

Была выдвинута в 1973 году .

МР томограф состоит из:

  • магнитных градиентов;
  • основного магнита;
  • приёмника радиоимпульсов;

Рассмотрим лишь Качество и скорость

  1. ультранизкие: менее 0,1 Тл ;
  2. низкопольные : в диапазоне от 0,1 до 0,5 Тл ;
  3. средние: от 0,5 до 1,0 Тл ;
  4. высокопольные : 1,0 - 2,0 Тл 1,5 Тл ;
  5. ультравысокие: от 2,0 Тл и выше 3,0 Тл .

  • постоянные;
  • резистивные электрические;
  • поле 0,2 - 0,3 Тл ;
  • экономичны в эксплуатации

томографов открытого типа МРТ клаустрофобии .
весом более 120 кг

  • магнитное поле от 0,2 до 0,4 Тл ;
  • конструктивные особенности:
  • поле 0,35 - 4 Тл .
  • высокопольность ;
  • создание на их основе томографов открытого типа .
  • высокая стоимость;
  • выравнивания магнитного поля

Принцип работы МРТ томографа

  • модулирует их в импульсы ;
  • компьютер
    • централизованно управлять всей системой ;

Идея по формированию изображения внутренних органов человека посредством ядерного магнитного резонанса была выдвинута в 1973 году .
В 2003 году Paul Christian Lauterbur из университета Иллинойса (США) и Peter Mansfield из университета Ноттингема (Великобритания) получили Нобелевскую премию в области физиологии и медицины за изобретение МРТ томографа.

МР томограф состоит из:

  • магнитных градиентов;
  • основного магнита;
  • систем сбора и обработки данных;
  • генератора (передатчика) радиоимпульсов;
  • приёмника радиоимпульсов;
  • систем энергоснабжения и охлаждения.

Рассмотрим лишь общие принципы строения МР томографов , так как частое обновление модельного ряда лишает смысла рассматривать конструктивные особенности конкретного аппарата. Качество и скорость получения выходной картинки, определяемые сигналом в приемной катушке томографа, зависят от магнитной индукции (силы магнита).

По силе магнитного поля томографы разделяются на:

  1. ультранизкие: менее 0,1 Тл ;
  2. низкопольные : в диапазоне от 0,1 до 0,5 Тл ;
  3. средние: от 0,5 до 1,0 Тл ;
  4. высокопольные : 1,0 - 2,0 Тл , типичный высокопольный томограф 1,5 Тл ;
  5. ультравысокие: от 2,0 Тл и выше , наиболее распространены модели томографов 3,0 Тл .

Магниты в МР томографах классифицируются как:

  • постоянные;
  • резистивные электрические;
  • сверхпроводящие электрические.
Характеристики магнитов 1 класса постоянных:
  • состоят из ферромагнитных сплавов;
  • поле 0,2 - 0,3 Тл ;
  • экономичны в эксплуатации , так как не требуют затрат электроэнергии и охлаждения;
  • ориентация магнитного поля - вертикальная;

Преимуществом постоянных магнитов и томографов открытого типа на их основе является возможность проведения МРТ для больных, страдающих приступами клаустрофобии .
Экономичность, простота и возможность приема пациентов с клаустрофобией и весом более 120 кг способствовали росту спроса на МР томографы открытого типа на постоянных магнитах.

Характеристики резистивных электромагнитов 2 класса:
  • конструкция резистивного электрического магнита:
    • соленоид из медной или железной проволоки;
    • используется водяное охлаждение;
  • магнитное поле от 0,2 до 0,4 Тл ;
  • поле ориентировано вдоль отверстия соленоида;
  • современные модели МР томографов на основе резистивных электромагнитов - открытого типа.
Характеристики сверхпроводящих электромагнитов 3, 4 и 5 классов:
  • конструктивные особенности:
    • соленоид из ниобий - титанового сплава;
    • охлаждается жидким гелием до - 269 гр. по Цельсию (4К) при которой переходит в сверхпроводящее состояние;
  • поле 0,35 - 4 Тл .
Достоинства сверхпроводящих магнитов:
  • высокопольность ;
  • создание на их основе томографов открытого типа .
Недостатки высокопольных МР томографов:
  • высокая стоимость;
  • использование для охлаждения жидкого гелия;
  • необходимость дополнительного выравнивания магнитного поля для получения качественного изображения.

Принцип работы МРТ томографа

  • передающая катушка генерирует волны резонансной частоты и модулирует их в импульсы ;
  • приемная катушка, представляющая высокочувствительную антенну, расположенную перпендикулярно направлению основного поля (плоскость X-Y) передает полученный сигнал на АЦП ;
  • аналого-цифровой преобразователь (АЦП) отправляет данные в цифровом виде на операторский компьютер для реконструкции изображения;
  • компьютер , кроме получения изображения с томографа, позволяет:
    • централизованно управлять всей системой ;
    • обрабатывать, записывать и печатать изображение;
    • выполнять быстрое Фурье-преобразование.

Магнитно-резонансная томография. Важнейшее значение в современной лучевой диагностике приобрела магнитно-резонансная томография (МРТ). МРТ дает ценную диагностическую информацию о физических и химических параметрах, позволяющих судить о природе и морфологическом строении исследуемых органов и тканей. К тому же изображение можно получать в любой плоскости. Основными компонентами МР-томографа являются силовой магнит, радиопередатчик, приемная радиочастотная катушка и компьютер. Большинство магнитов имеют магнитное поле, параллельное длинной оси тела человека. Сила магнитного поля измеряется в теслах (Тл). Для клинической МРТ используются поля силой 0,02 -3 Тл.

Когда пациента помещают в сильное магнитное поле, все маленькие протонные магниты тела (ядра водорода) разворачиваются в направлении внешнего поля (подобно компасной стрелке, ориентирующейся на магнитное поле Земли). Помимо этого, магнитные оси каждого протона начинают вращаться (прецессировать) вокруг направления внешнего магнитного поля. При пропускании через тело пациента радиоволн, имеющих равную частоту с частотой вращения протонов (Ларморовская частота), магнитное поле радиоволн заставляет магнитные моменты всех протонов вращаться по часовой стрелке. Это явление называют магнитным резонансом.

Под резонансом понимают синхронные колебания, и для изменения ориентации магнитных протонов магнитные поля протонов и радиоволн должны резонировать, т.е. иметь одинаковую частоту.

В тканях пациента создается суммарный магнитный момент: ткани намагничиваются, и их магнетизм ориентируется точно параллельно внешнему магнитному полю. Магнетизм пропорционален числу протонов в единице объема ткани. Огромное число протонов (ядер водорода), содержащихся в большинстве тканей, обусловливает тот факт, что магнитный момент достаточно велик для того, чтобы индуцировать электрический ток в расположенной вне пациента принимающей катушке. Этот индуцированный электрический ток «МР-сигнал» используется для реконструкции изображения.

В промежутке между передачей импульсов протоны подвергаются двум различным процессам релаксации Т1 и Т2. Релаксация – это последствие постепенного исчезновения намагниченности, вызванного небольшими различиями в силе местных магнитных полей. Т2 релаксация – потеря магнетизма. Т1 релаксация – время восстановления магнетизма. Чем короче Т1, тем быстрее восстанавливается магнетизм.

Таблица 1 – Зависимость МР-сигнала от исследуемой ткани

Объект исследования

Интенсивность

Т1-взвешенный

Т2-взвешенный сигнал

Газ в легких, придаточных пазухах носа, желудке и кишечнике

Отсутствует

Отсутствует

Компактное вещество кости, участки обызвествления

Отсутствует

Отсутствует

Слабо минерализированные ткани

Губчатое вещество кости

Средний или близкий к высокому

Коллагеновые ткани

Связки, сухожилия, хрящи, соединительная ткань

Жировая ткань

Высокой интенсивности

Высокой интенсивности

Паренхиматозные органы, содержащие связанную воду

Печень, поджелудочная железа, надпочечники, мышцы, гиалиновые хрящи

Низкий или близкий к среднему

Паренхиматозные органы, содержащие свободную жидкость

Щитовидная железа, селезенка, почки, предстательная железа, яичники, половой член

Полые органы, содержащие жидкость

Желчный пузырь, мочевой пузырь, простые кисты

Ткани с низким содержанием белка

Спинномозговая жидкость, моча, отеки

Ткани с высоким содержанием белка

Синовиальная жидкость, пульпозное ядро межпозвоночного диска, сложные кисты, абсцессы

Кровь в сосудах

Отсутствует

Отсутствует

Очень высокая информативность МРТ обусловлена рядом ее достоинств.

    Особенно высокий тканевой контраст, основанный не на плотности, а на нескольких параметрах, зависящих от ряда физико-химических свойств тканей, и визуализация благодаря этому изменений, которые не дифференцируются при УЗИ и КТ.

    Возможность управлять контрастом, ставя его в зависимость то от одного, то от другого параметра. Варьируя контраст, можно выделить одни ткани и детали и подавить изображение других. За счет этого МРТ, например, впервые позволила визуализировать без контрастирования все мягкотканные элементы суставов.

    Отсутствие артефактов от костей, нередко перекрывающих мягкотканные контрасты при КТ, что позволяет без помех визуализировать поражение спинного и базальных отделов головного мозга.

    Мультипланарность – возможность изображений в любой плоскости.

    МРТ имеет и функциональные применения, например, изображение регургитации при клапанных пороках сердца в режиме кино или динамики движений в суставах.

    МРТ отображает кровоток без искусственного контрастирования. Специальные ангиопрограммы с двумерным или трехмерным сбором данных позволяют получить изображение кровотока с отличным контрастом. Контрастные средства для МРТ. Контрастное разрешение на MP-изображение может быть существенно улучшено различными контрастными средствами. В зависимости от магнитных свойств МР-контрастные средства подразделяются на парамагнитные и супермагнитные.

Парамагнитные контрастные средства. Парамагнитными свойствами обладают атомы с одним или несколькими неспаренными электронами. Это магнитные ионы гадолиния, хрома, никеля, железа, а также марганца. Наиболее широкое клиническое применение получили соединения гадолиния.

Контрастирующий эффект гадолиния обусловлен укорочением времени релаксации Т1 и Т2. В низких дозах преобладает воздействие на Т1, увеличивающее интенсивность сигнала. В высоких дозах преобладает воздействие на Т2 со снижением интенсивности сигнала. Наиболее широкое распространение имеют парамагнитные внеклеточные МР-контрастные средства:

    Магневист (гадопентат димеглюмина).

    Дотарем (гадотерат меглюмина).

    Омнискан (гадодиамид).

    Проханс (гадотеридол).

Суперпарамагнитные контрастные средства. Суперпарамагнитный оксид железа – магнетит. Его доминирующим воздействием является укорочение релаксации Т2. С увеличением дозы происходит снижение интенсивности сигнала.

Так же как в компьютерной томографии, пероральные контрастные средства используются при исследованиях органов брюшной полости, чтобы дифференцировать кишечник и нормальные или патологические ткани.

Магнетит (Fe 3 O 4) – применяется при исследованиях желудочно-кишечного тракта. Это суперпарамагнитное вещество с преимущественным действием на Т2 релаксацию. Действует как негативное контрастное средство, т.е. снижает интенсивность сигнала.

Недостатки МРТ:

    Плохо отображаются обызвествления

    Длительное время изображения вместе с артефактами от дыхательных и других движений ограничивает применение МРТ в диагностике заболеваний грудной и брюшной полостей.

Вредность. При МРТ нет ионизирующего излучения и радиационной вредности. Для подавляющего большинства пациентов метод не представляет опасности.

МРТ противопоказана:

    Пациентам с установленным водителем ритма или с внутриглазничными, внутричерепными и внутрипозвоночными ферромагнитными инородными телами и с сосудистыми клипсами из ферромагнитных материалов (абсолютное противопоказание).

    Реанимационным больным из-за воздействия магнитных полей МР-томографа на системы жизнеобеспечения.

    Пациентам с клаустрофобией (составляют примерно 1%); хотя она нередко уступает седативным средствам (реланиум).

    Женщинам в первой трети беременности.

Магнитно резонансная томография или сокращенно МРТ – это современный безопасный и эффективный метод диагностики, позволяющий специалистам точно определить заболевание, патологию, травму или другие нарушения в работе органов человеческого тела. Проще говоря, МРТ это сканирование, но с другим принципом действия в отличие от рентгенографии и КТ.

Магнитно резонансная томография имеет ряд преимуществ перед другими методами диагностики, а также показания и противопоказания к проведению. Предварительная расшифровка результатов исследования проводится специалистом-радиологом после процедуры. Более точное и конкретизированное объяснение результатов МРТ делается врачом с учетом данных анамнеза и клинической картины.

Принцип действия и преимущества перед другими методами диагностики

Принцип действия МРТ сканера основывается на особенностях действия магнитного поля и магнитных свойствах тканей тела. Благодаря взаимодействию ядерно-магнитного резонанса и ядер атомов водорода, во время обследования на экран компьютера выводится послойное изображение органов человеческого тела. Таким образом удается не только дифференцировать одни органы и ткани от других, но и зафиксировать наличие даже незначительных нарушений, опухолевых и воспалительных процессов.

Принцип работы МРТ позволяет точно оценить состояние мягких тканей, хрящей, мозга, органов, дисков позвоночника, связок – тех структур, которые в значительной степени состоят из жидкости. В то же время, МРТ в медицине меньше используется, если необходимо исследование костей или тканей легких, кишечника, желудка – структур, содержание воды в которых минимально.

Аппарат томографии закрытого типа

Благодаря тому, как работает МРТ, можно выделить ряд преимуществ данного вида исследования перед другими:

  • В результате обследования удается получить детализированное изображение. Поэтому данная методика считается наиболее эффективной для раннего обнаружения опухолей и очагов воспаления, исследования нарушений ЦНС, опорно-двигательной системы, органов брюшной полости и малого таза, мозга, позвоночника, суставов, кровеносных сосудов.
  • Магнитная томография позволяет провести диагностику в тех местах, где КТ не эффективно из-за перекрытия обследуемого участка костными тканями или вследствие нечувствительности КТ к изменениям плотности тканей.
  • Во время процедуры не происходит ионизирующее облучение пациента.
  • Можно получить не только изображение структуры тканей, но и МРТ показания их функционривания. Например, скорость кровотока, тока спинномозговой жидкости и мозговой активности фиксируются при помощи функциональной магнитно резонансной томографии.
  • Возможность проведения контрастного МРТ. Контрастное вещество повышает диагностический потенциал процедуры.
  • МРТ открытого типа позволяют проходить обследования пациентам с боязнью замкнутого пространства.

Еще одно преимущество — при постановке диагноза практически исключены ошибки. Если пациента волнует вопрос: «Может ли МРТ ошибаться?», то ответ получается немного неоднозначным. С одной стороны данная процедура является одним из самых точных методов диагностики. С другой стороны ошибки могут произойти на этапе расшифровки результатов и постановки диагноза врачом.

Классификация современных магнитных томографов

Большинство пациентов настороженно относятся к аппаратам магнитной томографии, так как не знают чего ожидать во время процедуры и боятся, что им станет плохо в замкнутом пространстве. Для других людей стандартное исследование недоступно из-за их веса (более 150 кг.), наличия психологических расстройств или детского возраста.

Однако, не все знают, что современные ученые-технологи уже давно решили и эти проблемы, разработав разные виды томографов:

  • Сканер закрытого типа;
  • Сканер МРТ открытого типа.

В большинстве медицинских учреждений установлены стандартные аппараты МРТ закрытого типа, то есть те, где пациент во время исследования находится в «туннеле». Такое оборудование считается наиболее надежным, так как напряженность магнитного поля в них достаточно высокая.

Но в некоторых клиниках устанавливают МРТ открытого типа. Такие аппараты считаются не такими надежными из-за низкой напряженности магнитного поля. Но с каждым годом технологии совершенствуются, и томограф открытого типа уже нельзя отнести к менее информативным или недостаточно мощным. Тем более, что такой аппарат имеет следующие преимущества:

  1. Конструкция томографа не предполагает наличия задвижного стола, что позволяет обследовать пациентов со значительной массой тела.
  2. Во время исследования пациент находится не в замкнутом пространстве. Это позволяет значительно снизить психологический дискомфорт, исключить приступы паники и клаустрофобии.
  3. При некоторых травмах специфическая фиксация конечностей делает невозможным помещение пациента в томограф закрытого типа. Поэтому открытые типы МРТ – единственный способ провести диагностику возможных травм внутренних органов, мозга.

Допустимость обследования пациента на открытом или закрытом томографе значительно расширяет возможности врачей в сложных или нестандартных случаях.

Показания к проведению процедуры

Для чего делают МРТ, и в каких ситуациях такой метод исследования будет эффективным? Как уже отмечалось, магнитная томография позволяет провести диагностику широкого ряда заболеваний и состояний. Все виды МРТ исследований и показания к их проведению можно классифицировать в зависимости от обследуемых органов/систем:

  • : нарушение кровообращения в мозгу, подозрения на опухолевые поражения, наблюдение за состоянием мозга после хирургического вмешательства, мониторинг возможных рецидивов опухолевых процессов, подозрения на наличие очагов воспаления, эпилепсия, поражения вследствие артериальной гипертензии, травма головы.
  • Височно-нижнечелюстные суставы: диагностика состояния дисков суставов, оценка эффективности хирургического лечения, неправильный прикус, подготовка к проведению ортодонтического лечения.
  • Глаза: подозрения на наличие опухоли, травмы, воспалительные процессы, диагностика состояния слезных желез после травм.
  • Область носа, рта: гайморит, подготовительные манипуляции перед проведением пластических операций.
  • : различные дегенеративные изменения в структуре позвоночника (например, остеохондроз), защемление корешков нервов, врожденные патологии, травмы и оценка эффективности лечения после травм, подозрения на опухолевые процессы, остеопороз.
  • Кости и суставы: кости, мягкие ткани, суставы – травмы (в том числе спортивные), возрастные изменения, воспалительные процессы, подозрения на наличие опухоли, травмы мышц, сухожилий, ревматоидный артрит.
  • : патология внутренних органов.
  • : аденома, рак простаты, оценка распространения опухолевых поражений, предоперационная подготовка, оценка состояния мочевого пузыря, мочеточников, прямой кишки, яичников, мошонки, миома матки, аномалии развития органов малого таза.

Также в случае надобности проводят обследование сосудов головного мозга, шеи, грудной области; артерий, вен, щитовидной железы. При подозрении на наличие опухолевых поражений или метастазов может быть обследовано все тело пациента.

Также показаниями к проведению МРТ могут стать инфаркт, порок или ишемическая болезнь сердца.

Противопоказания к проведению процедуры

Многих пациентов волнует, есть ли противопоказания к МРТ. Конечно же, такие ограничения для томографии существуют, как и для любой другой медицинской манипуляции.

Весь перечень противопоказаний к проведению МРТ можно разделить на абсолютные и относительные. К абсолютным относятся наличие металлического инородного тела, протеза или электромагнитного импланта, кардиостимулятора. Если проводится МРТ с контрастированием — почечная недостаточность и аллергия на контрастное вещество.

Наличие этих факторов делает проведение процедуры абсолютно невозможным. Под относительными противопоказаниями подразумеваются состояния или обстоятельства, которые со временем могут пройти/измениться, и проведение обследования становится возможным.

Относительные противопоказания:

  1. Первые 3 месяца .
  2. Психические проблемы, шизофрения, клаустрофобия, панические состояния.
  3. Тяжелые заболевания в стадии декомпенсации.
  4. Наличие у пациента татуировок, которые были выполнены с применением красителей на основе металлических соединений.
  5. Сильная боль, вследствие чего человек не может соблюдать полную неподвижность.
  6. Состояние опьянения – алкогольного или наркотического.

Является ли детский возраст пациента противопоказанием и можно ли делать МРТ детям, если да – с какого возраста? Специалисты на эти вопросы отвечают, что детский возраст не является помехой для проведения исследования. То есть делается МРТ даже новорожденным младенцам. Однако, с маленькими детьми существует другая проблема – их очень трудно заставить пребывать в неподвижном состоянии. Особенно долгое время, тем более в замкнутом пространстве. Есть несколько решений данной проблемы, например, предварительная беседа с ребенком или применение наркоза. МРТ исследование под наркозом делается и взрослым в тех случаях, когда процедуру провести крайне необходимо, но человек страдает клаустрофобией или приступами паники.

Подготовительные мероприятия

Общая подготовка к МРТ – важный этап исследования, который нельзя игнорировать. От того, насколько точно пациент будет следовать рекомендациям специалистов, зависит успешность процедуры и точность результатов.

Подготовка к исследованию начинается с обязательной консультации у терапевта. Врач уточнит данные анамнеза, проведет внешний осмотр, прояснит вопрос с противопоказаниями, подробно расскажет, как делают МРТ, даст направление на исследование конкретных проблемных зон.

Подготовка к МРТ также включает оценку собственного состояния. Пациент должен быть готов к тому, что будет находиться в замкнутом, шумном пространстве некоторое время. Если человек предполагает, что у него может начаться паника, он должен заранее заручиться поддержкой близкого человека. Родственник или супруг/а также помогут доехать домой после процедуры, если перед обследованием пациенту дадут седативные препараты для успокоения. МРТ под наркозом также требует присутствия близкого человека, который доставит пациента домой после исследования.

МРТ подготовка включает снятие (с себя и с одежды) всех металлических предметов – булавок, пирсинга, сережек и других украшений, съемных имплантов и протезов, шпилек, белья с металлическими вставками и т.д.

Перед процедурой нужно сходить в туалет, нельзя употреблять спиртное и наркотические вещества. Можно ли есть перед МРТ, принимать обычные лекарства? Да, если предстоит исследование головного мозга, суставов, глаз, носоглотки или позвоночника.

Некоторые виды томографического исследования требуют, чтобы была произведена специальная подготовка к МРТ.

Например, перед исследованием органов малого таза нужно помочиться за 3 часа до процедуры и больше этого не делать. За 60 минут перед сеансом выпить пол литра простой воды, так мочевой пузырь будет наполнен наполовину, что и требуется для правильной диагностики. Накануне вечером нужно полностью очистить кишечник с помощью клизмы или слабительного.

МРТ органов брюшной полости делается только натощак, поэтому вопрос о том, можно ли кушать перед процедурой, в данном случае не уместен. Исключения составляют ситуации, когда сеанс нельзя провести в утренние часы. В таком случае допустимо очень легко позавтракать. Очищение кишечника накануне, прием спазмолитиков за 30 минут перед сеансом – очень желательно.

Подготовка детей к исследованию на магнитном томографе

Физически детей к проведению процедуры готовят так же, как и взрослых. Если ребенок уже в таком возрасте, когда понимает, что от него хотят, и слушается родителей (6-7 лет), нужно рассказать ему, как подготовиться к МРТ самостоятельно. В случае необходимости – помочь.

Подготовка ребенка к МРТ головного мозга на аппарате открытого типа

Психологическая подготовка ребенка – необходимый предварительный этап. Нужно рассказать малышу, зачем делать МРТ, что его ждет во время этой процедуры, какие ощущения могут возникнуть, как подавить негативные мысли и страхи. Также нужно предупредить ребенка о том, сколько по времени делают МРТ и о том, что все это время он должен быть максимально неподвижным.

Если родители видят, что ребенок психологически не готов, ощущает сильный страх или есть другие сопутствующие факторы (сильная боль, эпилепсия, судорожные приступы), вероятно, придется применить глубокую седацию или поверхностный наркоз.

Как проходит сеанс магнитно резонансной томографии

Для того, чтобы во время сеанса обследования не произошло никаких неожиданностей и неприятных сюрпризов, пациенту нужно приблизительно представлять себе как делают МРТ. Стандартная процедура включает следующие этапы:

  1. Пациента просят раздеться и снять с тела все посторонние предметы, включая парик, съемные протезы и слуховой аппарат, украшения и т.д. На смену врач выдаст одноразовую накидку.
  2. Пациент принимает горизонтальное положение на специальном задвижном столе. Затем стол задвигается в тоннель аппарата. С современными томографами возможны вариации этого этапа. Например, в случае использования томографа открытого типа или аппарата предполагающего сидячее положение.
  3. Сколько по времени длится МРТ, зависит от вида исследования. В среднем – от 20 до 120 минут. Все это время пациент должен поддерживать абсолютную неподвижность исследуемой области тела.
  4. Во время сеанса томографии пациент слышит шум или гудение, возможно ощущение легкой вибрации. Чтобы облегчить нахождение в замкнутом пространстве лучше закрыть глаза и максимально расслабиться.

После окончания сеанса пациента могут попросить некоторое время подождать, чтобы удостоверится, что все прошло успешно, полученных данных достаточно и дополнительные манипуляции не требуются. После этого пациенту возвращают личные вещи и одежду – сеанс магнитно резонансной томографии окончен.

Отдельного внимания требует конкретизация того, как проходит процедура МРТ в случае применения наркоза или контрастных веществ.

Особенности проведения МРТ пациентам под наркозом

МРТ под наркозом может быть двух видов:

  • Глубокая седация с применением современных лекарственных препаратов-транквилизаторов. Помогает значительно успокоить пациента, снять тревогу, купировать панические приступы.
  • Наркоз, который делается с помощью внутривенной инъекции или ингаляции. Такой метод может потребовать дополнительной вентиляции легких и подключения аппаратов наблюдения за состоянием жизненных функций.

Обычно действие наркоза проходит уже через 30-60 минут после окончания сеанса исследования. Перед наркозом нельзя есть в течение 9, а детям до 6 лет – 6 часов. Пить можно только чистую воду и чай, маленькими порциями. Прием жидкости прекратить за 2 часа до процедуры.

После наркоза покидать клинику можно только с сопровождающим, самостоятельное управление транспортным средством категорически запрещено.

Магнитно резонансная томография с контрастом

Инжектор для введения контрастного вещества во время исследования

Что такое МРТ с контрастом? Это такая же процедура, как и стандартное МРТ, только для повышения информативности процедуры в вену пациента вводят безопасное нетоксичное вещество. В большинстве случаев это необходимо при диагностике опухолевых поражений. Таким образом удается провести наиболее развернутое исследование, детально изучить размеры опухоли, ее структуру и степень распространения.

Однако, опухоль – не единственная причина для проведения данного вида процедуры. Для обследования с контрастным усилением существует целый ряд показаний.

Противопоказания – беременность, лактация, аллергия (очень редкие случаи).

Никаких последствий и побочных реакций после сеанса томографии с контрастом пациент не испытывает.

Результаты магнитно резонансного исследования

То, что показывает МРТ, то есть результаты обследования, будут готовы в течение 1 или 2 дней. Если в организме все нормально, то результаты покажут, что все органы и ткани организма находятся на своих местах, имеют стандартные размеры, форму, структуру, плотность. Магнитно резонансная томография также покажет, что в теле нет злокачественных или доброкачественных новообразований, кровотечений, тромбов, воспалительных или инфекционных процессов.

Рентгенологи делают заключение по МРТ исследованию

Если же врач обнаружит какие-либо нарушения – это будет отображено в заключении и истории болезни.

Подведем итоги

МРТ – самый современный, один из наиболее точных и безопасных неинвазивных методов исследования человеческого организма. Сеанс магнитной томографии абсолютно безболезненный и подходит для обследования даже маленьких детей. То, что может показать МРТ, помогает врачу диагностировать любую проблему со здоровьем или подтвердить ее отсутствие.

Один из самых эффективных методов медицинского исследования - МРТ или магнитно-резонансная томография, позволяющая получить максимально точные сведения об анатомических особенностях организма пациента, обменных процессах, физиологии тканей и внутренних органов. С его появлением стало возможно детальное обследование головного мозга для диагностики заболеваний и дегенеративных поражений. Возможность определения локализации процесса и объема произошедших повреждений становится основным преимуществом данной процедуры при выявлении новообразований и исследовании сосудов.

Что такое МРТ

Магнитно-резонансная томография - это уникальная возможность получения высокоточных послойных изображений исследуемой области. Процедура проводится при помощи специального аппарат, действие которого на организм человека заключается в стимуляции радиоволн, создании сильного магнитного поля и регистрации ответного электромагнитного излучения организма. Результатом процесса становится построение изображения путем обработки поступающего сигнала на компьютере.

Что такое магнитно-резонансный томограф? Это устройство, позволяющее добиться эффективной диагностики, выявить изменения в работе организма и произвести высокоточную визуализацию исследуемых органов, которая значительно превосходит результаты других методик (рентгена, КТ, ультразвука). Такая процедура позволяет выявить онкологию и ряд других заболеваний и опасных патологий, измерить скорость кровотока и движения спинномозговой жидкости и т.д.


В основе работы аппарата лежит принцип ЯМР с последующей обработкой полученных сведений специальными программами. МРТ установка обеспечивает создание сильного магнитного поля. Немаловажным фактором, объясняющим принцип работы устройства, является наличие в человеческом организме протонов (в химическом смысле это ядро атома водорода) . Магнитно-резонансный томограф позволяет поддерживать стабильное состояние магнетизма в теле пациента, при помещении его в силовое поле. Аппарат производит:

    стимуляцию организма при помощи радиоволн, способствуя смене стационарной ориентации заряженных частиц;

    остановку радиоволн и регистрацию электромагнитных излучений организма;

    обработку полученного сигнала и преобразование его в изображение.

Полученная картинка не является фотографическим снимком обследуемого отдела или органа. Специалист получает высококачественное детализированное отображение радиосигналов, испускаемых телом пациента. МРТ диагностика полностью превосходит метод компьютерной томографии, поскольку в данном случае при проведении процедуры не применяется ионизирующее излучение, а используются безопасные для человеческого организма электромагнитные волны.

История создания и принцип работы МРТ

Годом создания данного метода считается 1973, а одним из отцов-основателей магнитно-резонансной томографии - Пол Лотербур. В одном из журналов им была опубликована статья, в которой подробно описывался феномен визуализации структур и органов при помощи использования магнитных и радиоволн.

Это не единственный ученый, причастный к открытию МРТ - еще в 1946 году Феликс Блох и Ричард Пурселл, работающие в Гарварде, изучали физическое явление, в основе которого лежали свойства, присущие атомным ядрам (первичное поглощение получаемой энергии и последующее ее переизлучение. т.е. выделение с переходом к начальному состоянию). За это исследование ученые получили Нобелевскую премию (1952).

Открытие Блоха и Пурселла стало своеобразным толчком к развитию теории по ЯМР. Необычное явление изучалось как химиками, так и физиками. Демонстрация первого компьютерного томографа, включающая в себя ряд испытаний, произошла в 1972 году. Результатом проведенного исследования стало обнаружение принципиально нового способа диагностики, позволяющего детально визуализировать важнейшие структуры организма.

Далее Лотербуром был частично сформулирован принцип работы аппарата МРТ - работа ученого легла в основу исследований, проводимых до наших дней. В частности, в статье содержались следующие утверждения:

    Трехмерные проекции объектов получаются по спектрам ЯМР протонов воды из обследуемых структур, органов и т.д.

    Особое внимание уделялось наблюдению за злокачественными новообразованиями. Опыты, проведенные Лотербуром, показали: они существенно отличаются от здоровых клеток. Разница заключается в характеристиках полученного сигнала.

В 70-е годы XX века началась новая эра развития МРТ-диагностики. В это время Ричардом Эрнстом было предложено проведение магнитно-резонансной томографии с использованием особого метода - кодирования (как частотного, так и фазового). Именно этим способом визуализации исследуемых областей и пользуются врачи в наши дни. В 1980 году был продемонстрирован снимок, на получение которого ушло около 5 минут. Уже через шесть лет длительность отображения снизилась - до пяти секунд. При этом качество картинки оставалось неизменным.

В 1988 году был усовершенствован и метод ангиографии, позволяющий отобразить кровоток пациента без дополнительного ввода в кровь препаратов, выполняющих роль контраста.

Развитие МРТ стало новой вехой в современной медицине. Эта процедура применяется в диагностике заболеваний:

    позвоночника;

    суставов;

    мозга (головного и спинного);

    гипофиза;

    внутренних органов;

    молочных желез и т.д.

Возможности открытого метода позволяют обнаруживать заболевания на ранних стадиях и выявлять патологии, требующие своевременного лечения или же немедленного операционного вмешательства. Томография, проведенная на современном оборудовании, дает возможность получить точное изображение органов, обследуемых структур и тканей, а также:

    собрать необходимую информацию о циркуляции спинномозговой жидкости;

    определять уровень активации областей коры головного мозга;

    проследить за газообменом в тканях.


Метод МРТ выгодно отличается от других способов диагностики:

    Он не предполагает воздействия, осуществляемого при помощи хирургических инструментов.

    Магнитно-резонансная томография безопасна и высокоэффективна.

    Данная процедура относительно широко доступна и востребована при исследовании наиболее сложных случаев, требующих детальной визуализации происходящих в организме изменений.

На видео ниже демонстрируются основные этапы функционирования современного томографа:

Принцип работы МРТ (видео)

Принцип работы магнитно-резонансного сканера (МРТ)

Как проходит процедура? Человека помещают в специальный узкий тоннель, в котором он должен находиться в горизонтальном положении. В трубе на него воздействует сильное магнитное поле прибора. Исследование длится от 15 до 20 минут.

После пациенту выдается изображение. Оно создается благодаря методу ЯМР - физическому явлению магнитно-ядерного резонанса, связанному со свойствами протонов.При помощи радиочастотного импульса в созданном устройством электромагнитном поле вырабатывается излучение, преобразующееся в сигнал. После он регистрируется и обрабатывается компьютерной программой.

Каждый обследуемый и выводимый на экран в виде изображения срез имеет свою толщину. Рассматриваемый способ отображения схож с технологией удаления всего, что располагается над слоем и под ним. При этом большую роль играют отдельные элементы объема и плоскости - части среза и структурные компоненты получаемого магнитно-резонансного снимка.


Поскольку человеческое тело на 90% состоит из воды, происходит стимуляция протонов атомов водорода. Этот метод воздействия позволяет заглянуть в организм и диагностировать серьезные заболевания без физического вмешательства.

Устройство аппарата МРТ

Рассматриваемое современное оборудование состоит из следующих частей:

    магнит;

    катушки;

    прибор, генерирующий радиоимпульсы;

    клетка Фарадея;

    источник питания;

    система охлаждения;

    системы, служащие для обработки поступающих данных.

Магнит

Создает стабильное поле, характеризующееся однородностью и высокой напряженностью. Именно по последнему показателю оценивается мощность прибора. Напомним о том, что именно от нее зависит качество получаемого изображения и скорость проведения процедуры.

В зависимости от напряженности все аппараты разделяются на следующие группы:

    Низкопольные - оборудование начального уровня, открытые, сила поля < 0.5 Tл.

    Среднепольные - показатели от 0,5-1 Тл.

    Высокопольные - отличаются высокой скоростью исследования, четким изображением даже при движении пациента во время обследования. Напряженность магнитного поля этих установок - 1-2 Тл.

    Сверхвысокопольные - более 2 Тл. Используются для исследовательских целей.

Также выделяются следующие виды используемых магнитов:

    Постоянные - изготавливаются из сплавов, обладающих ферромагнитными свойствами. Преимущество таких элементов - их не нужно охлаждать, поскольку они не требуют энергии для поддержания однородного поля. Среди недостатков - большой вес используемой системы, низкая напряженность. Также подобные магниты чувствительны к температурным изменениям.

    Сверхпроводящие - катушка, изготовленная из специального сплава. Через нее могут пропускать большие токи. Результатом работы такого устройства становится создание сильного магнитного поля. Дополнением к конструкции идет система охлаждения. Минусы данного вида - повышенное потребление жидкого гелия при низких энергозатратах, большие расходы на эксплуатацию прибора, обязательное экранирование. Также велик риск выбрасывания охлаждающей жидкости из криостата при потере свойств сверхпроводимости.

  • Резистивные - электромагниты не требуют использования специальных охлаждающих систем, способны создавать относительно гомогенное поле для проведения сложных исследований. Недостаток - большой вес (примерно 5 тонн, повышается в процессе экранирования)

Принцип работы катушки в МРТ

Эти элементы предназначены для повышения однородности магнитного поля. Пропуская через себя ток, они корректируют характеристики, компенсируя недостаточную гомогенность. Такие детали либо размещаются непосредственно в жидком гелии, либо не требуют охлаждения.

Результатом работы градиентных катушек становится создание четкого изображения путем локализации сигнала и сохранения точного соответствия данных, полученных во время процедуры, и области, исследуемой врачом.

Большое значение имеют мощность и скорость действия деталей - от этих показателей зависит разрешающая способность прибора, уровень шума в соотношении с сигналом и быстрота действия.

Передатчик в МРТ: принцип работы элемента в системе томографа

Данный прибор формирует радиочастотные колебания и импульсы (прямоугольной и сложной формы). Подобное преобразование позволяет добиться возбуждения ядер, повлиять на контраст изображения, выводимого на снимок. Сигнал от элемента поступает на переключатель, который, в свою очередь, воздействует на катушку, генерируя РЧ магнитное поле, влияющее на спиновую систему.

Приемник

Представляет собой отличающийся высокой чувствительностью и низким уровнем шума усилитель сигнала, работа которого происходит на сверхвысоких частотах. Регистрируемый отклик претерпевает изменения - преобразование из МГц в кГц (от высоких частот к низким).

Запчасти для томографов

За получение точного детализированного изображения отвечают и регистрирующие датчики, которые располагаются вокруг исследуемого органа пациента. Подобная процедура абсолютно безопасна: произведя излучение сообщенной энергии, протоны возвращаются в прежнее состояние.

За получение точного детализированного изображения отвечают и регистрирующие датчики, которые располагаются вокруг исследуемого органа пациента. Подобная процедура абсолютно безопасна: произведя излучение сообщенной энергии, протоны возвращаются в прежнее состояние. Для улучшения качества изображения и большей детализации изображения пациенту могут ввести контрастное вещество на основе гадолиния, не вызывающее побочных реакций. Специальный препарат помещается в шприц или инъектор, автоматически рассчитывающий дозировку и скорость ввода. Подача средства полностью синхронизирована с ходом сканирования.

Качество проведенного обследования зависит не только от напряженности магнитного поля, но и от используемой катушки, применения контрастного вещества, особенностей диагностики и опыта специалиста, проводящего томографию.

Преимущества подобной процедуры:

    возможность получения максимально точного изображения осматриваемого органа;

    повышение качества диагностики;
    безопасность для пациента.

Томографы отличаются по силе создаваемого ими поля и «открытости» магнита. Чем больше мощность поля, тем быстрее проходит процедура сканирования и выше качество получаемого трехмерного изображения.

Открытые аппараты МРТ имеют C-образную форму и являются оптимальным вариантом для обследования людей, страдающих выраженной клаустрофобией. Они создавались для проведения дополнительных процедур внутри магнита. Такой тип установок гораздо слабее закрытых томографов.

Обследование с применением МРТ является одним из самых эффективных и безопасных способов диагностики и наиболее информативным методом для детального исследования спинного и головного мозга, позвоночника, органов брюшной полости и малого таза.

В 1973 году американский химик Пол Лотербур опубликовал в журнале Nature статью под названием «Создание изображения с помощью индуцированного локального взаимодействия; примеры на основе магнитного резонанса». Позднее британский физик Питер Мэнсфилд предложит более совершенную математическую модель получения изображения целого организма, а в 2003 году исследователи получат Нобелевскую премию за открытие метода МРТ в медицине.

Немалый вклад в создание современной магнитно-резонансной томографии внесет и американский ученый Реймонд Дамадьян, отец первого коммерческого аппарата МРТ и автор работы «Обнаружение опухоли с помощью ядерного магнитного резонанса», опубликованной в 1971 году.

Но справедливости ради стоит отметить, что задолго до западных исследователей, в 1960 году, советский ученый Владислав Иванов уже подробно изложил принципы МРТ, тем не менее авторское свидетельство он получил лишь в 1984 году… Давайте же оставим споры об авторстве, и рассмотрим наконец в общих чертах принцип работы магнитно-резонансного томографа.

В наших организмах очень много атомов водорода, а ядро каждого атома водорода — это один протон, который можно представить в виде маленького магнитика, существующего благодаря наличию у протона ненулевого спина. То что ядро атома водорода (протон) имеет спин, - это значит что оно как бы вращается вокруг своей оси. При этом известно, что у ядра водорода есть положительный электрический заряд, а вращающийся вместе с наружной поверхностью ядра заряд — это подобие маленького витка с током. Получается, что каждое ядро атома водорода — это миниатюрный источник магнитного поля.

Если теперь много ядер атомов водорода (протоны) поместить во внешнее магнитное поле, то они начнут пытаться сориентироваться по этому магнитному полю подобно стрелкам компасов. Однако в процессе такой переориентации ядра начнут прецессировать, (как прецессирует ось гироскопа при попытке его наклонить), потому что магнитный момент каждого ядра оказывается связан с механическим моментом ядра, с наличием у него упомянутого выше спина.

Допустим, ядро водорода поместили во внешнее магнитное поле с индукцией 1 Тл. Частота прецессии в этом случае составит 42,58 МГц (это так называемая ларморовская частота для данного ядра и для данной индукции магнитного поля). И если теперь оказать дополнительное воздействие на это ядро электромагнитной волной с частотой 42,58 МГц, возникнет явление ядерного магнитного резонанса, то есть амплитуда прецессии возрастет, поскольку вектор общей намагниченности ядра станет больше.

И таких ядер, способных прецессировать и попадать в резонанс, в наших телах миллиард миллиардов миллиардов. Но поскольку в режиме обычной повседневной жизни магнитные моменты всех ядер водорода и других веществ в нашем теле друг с другом взаимодействуют, то общий магнитный момент всего тела равен нулю.

Действуя радиоволнами на протоны, получают резонансное усиление колебаний (увеличение амплитуд прецессий) этих протонов, а по окончании внешнего воздействия протоны стремятся вернуться к своем исходным состояниям равновесия, и тогда уже они сами излучают фотоны радиоволн.

Таким образом в аппарате МРТ тело человека (или какое-нибудь другое исследуемое тело или предмет) превращается периодически то в набор радиоприемников, то в набор радиопередатчиков. Исследуя таким образом участок за участком тела, аппарат строит пространственную картину распределения атомов водорода в теле. И чем более высока напряженность магнитного поля томографа — тем больше атомов водорода, связанных с другими атомами, расположенными рядом, можно исследовать (тем выше разрешение магнитно-резонансного томографа).

Современные медицинские томографы в качестве источников внешнего магнитного поля содержат , охлаждаемые жидким гелием. В некоторых томографах открытого типа для этой цели используются .

Оптимальная индукция магнитного поля в аппарате МРТ составляет сегодня 1,5 Тл, она позволяет получать довольно качественные снимки многих частей тела. При индукции менее 1 Тл не получится сделать качественный снимок (достаточно высокого разрешения), например малого таза или брюшной полости, однако для получения обычных снимков МРТ головы и суставов подходят и такие слабые поля.

Для правильной пространственной ориентации, в магнитно-резонансном томографе кроме постоянного магнитного поля используются еще и градиентные катушки, создающие дополнительное градиентное возмущение в однородном магнитном поле. В результате наиболее сильный резонансный сигнал локализуется более точно в том или ином срезе. Мощность и параметры действия градиентных катушек — наиболее значимые показатели в МРТ — от них зависит разрешение и быстродействие томографа.

Выбор редакции
Одним из самых распространенных раскладов гадания на будущее является «Кельтский крест». Из данного гадания можно получить много полезной...

Мало кто из людей не хочет знать о своем будущем. Стоит только получить предсказание, человек сразу же начнет анализировать его. И если...

Оракулы во все времена давали загадочные, но четкие ответы на правильно поставленные вопросы. Гадание на картах Таро «Оракул Любви» даст...

Сделав простой расклад на картах Таро на будущее, вы узнаете, что будет в отношениях с вашим любимым человеком в ближайшем времени. А...
Каждый человек имеет свое личное число. Именно от него зависит, в каком году вы выйдете замуж. Например, вы родились 19 января 1987 года....
Мы не можем не испытывать желаний. И всё время к чему-нибудь стремимся. Это создаёт массу поводов для тревог и волнений, рождает мысли о...
Интерес к старинным гаданиям на картах, прорицаниям и оккультным наукам не ослабевает даже в век интернета и нанотехнологий. Люди...
Если вы попали сюда, то у вас появился вопрос — куда вложить деньги? Здесь вы найдете самое выгодное вложение денежных средств в 2016...
Плавленый сыр по праву считается универсальным блюдом. Его нередко добавляют в салаты, используют в качестве самостоятельной закуски....